
mental ray Production Shader Library

Document version 3.8.0.0
November 20, 2008

Copyright Information

c© 1986, 2015 NVIDIA Corporation. All rights reserved.

This document is protected under copyright law. The contents of this document may not be
translated, copied or duplicated in any form, in whole or in part, without the express written
permission of NVIDIA Corporation.

The information contained in this document is subject to change without notice. NVIDIA
Corporation and its employees shall not be responsible for incidental or consequential damages
resulting from the use of this material or liable for technical or editorial omissions made herein.

NVIDIA, the NVIDIA logo, imatter, IndeX, Iray, mental images, mental ray, and RealityServer
are trademarks and/or registered trademarks of NVIDIA Corporation. Other product names
mentioned in this document may be trademarks or registered trademarks of their respective
companies and are hereby acknowledged.

Table of Contents
1 Introduction 1

1.1 About the Library . 1

2 Motion Blur Shaders 3
2.1 Introduction . 3

2.1.1 Raytraced 3d Motion Blur . 4
2.1.2 Fast Rasterizer (aka “Rapid Scanline”) Motion Blur . 4
2.1.3 Post Processing 2d Motion Blur . 5

2.2 Considerations when Using 2d Motion Blur . 5
2.2.1 Rendering Motion Vectors . 5
2.2.2 Visual Differences - Opacity and Backgrounds . 6
2.2.3 Shutters and Shutter Offsets . 6

2.3 The mip motionblur Shader . 8
2.4 Using mip motionblur . 12

2.4.1 Multiple Frame Buffers and Motion Blur . 12
2.4.2 Good Defaults . 13

2.5 The mip motion vector Shader . 13
2.6 Using mip motion vector . 15

3 Card/Opacity Shader 17
3.1 Introduction . 17
3.2 mip card opacity . 18

4 Ray Type Switching Shaders 19
4.1 Generic Switchers . 19
4.2 Environment Switcher . 21
4.3 Render Stage Switcher . 21

5 Utility Shaders 23
5.1 Gamma/Gain Nodes . 23
5.2 Render Subset of Scene . 24
5.3 Binary Proxy . 26
5.4 FG shooter . 27

6 Mirror/Gray Ball Shaders 29
6.1 Introduction . 29
6.2 Mirror Ball . 29
6.3 Gray Ball . 30
6.4 Examples . 30

viii Table of Contents

7 Matte/Shadow Objects and Camera Maps 33
7.1 Introduction . 33
7.2 mip cameramap . 33
7.3 mip matteshadow . 34
7.4 mip matteshadow mtl . 38
7.5 Usage Tips . 39

7.5.1 Camera Mapping Explained . 39
7.5.2 Matte Objects and Catching Shadows . 40
7.5.3 Advanced Catching of Shadows . 44
7.5.4 Reflections . 45
7.5.5 Reflections and Alpha . 51
7.5.6 Best-of-Both-Worlds Mode . 52
7.5.7 Conclusion and Workflow Tips . 52

Chapter 1

Introduction

1.1 About the Library

The production shader library contains a set of shaders aimed at production users of mental
ray.

The library contains a diverse collection of shaders, ranging from small utilities such as ray
type switching and card opacity to large complex shaders such as the fast 2d motion blur
shader.

All of the shaders exist in the production.dll on Windows or production.so on other
platforms, and the shaders are declared in production.mi.

To use the shaders from standalone mental ray, include the following in your .mi files:

link "production.so"

$include "production.mi"

For embedded versions of mental ray consult your application specific documentation.

Chapter 2

Motion Blur Shaders

Motion Blur

2.1 Introduction

Real world objects photographed with a real world camera exhibit motion blur. When
rendering in mental ray, one has several choices for how to achieve these trade-offs. There are
three principally different methods:

4 2 Motion Blur Shaders

• Raytraced 3d motion blur

• Fast rasterizer (aka. “rapid scanline”) 3d motion blur

• Post processing 2d motion blur

Each method has it’s advantages and disadvantages:

2.1.1 Raytraced 3d Motion Blur

This is the most advanced and “full featured” type of motion blur. For every spatial sample
within a pixel, a number of temporal rays are sent. The number of rays are defined by the
“time contrast” set in the options block, the actual number being 1 / “time contrast” (unless
the special mode “fast motion blur” is enabled, which sends a single temporal sample per
spatial sample1).

Since every ray is shot at a different time, everything is motion blurred in a physically correct
manner. A flat moving mirror moving in it’s mirror plane will only show blur on it’s edges - the
mirror reflection itself will be stationary. Shadows, reflections, volumetric effects... everything
is correctly motion blurred. Motion can be multi-segmented, meaning rotating object can
have motion blur “streaks” that go in an arc rather than a line.

But the trade-off is rendering time, since full ray tracing is performed multiple times at
temporal sampling locations, and every ray traced evaluates the full shading model of the
sample.

With this type of motion blur, the render time for a motion blurred object increases roughly
linearly with the number of temporal samples (i.e. 1 / “time contrast”).

2.1.2 Fast Rasterizer (aka “Rapid Scanline”) Motion Blur

The rasterizer is the new “scanline” renderer introduced in mental ray 3.4, and it performs a
very advanced subpixel tessellation which decouples shading and surface sampling.

The rasterizer takes a set of shading samples and allows a low number of shading samples to
be re-used as spatial samples. The practical advantage is that fast motion blur (as well as
extremely high quality anti aliasing, which is why one should generally use the rasterizer when
dealing with hair rendering) is possible.

The trade-off is that the shading samples are re-used. This means that the flat mirror in our
earlier example will actually smear the reflection in the mirror together with the mirror itself.
In most practical cases, this difference is not really visually significant.

1“Fast motion blur” mode is enabled by setting “time contrast” to zero and having the upper and lower
image sampling rates the same, i.e. something like “samples 2 2”. Read more about “Fast motion blur” mode
at http://www.lamrug.org/resources/motiontips.html

2.2 Considerations when Using 2d Motion Blur 5

The motion blur is still fully 3d, and the major advantage is that the rendering time does not
increase linearly with the number of samples per pixel, i.e. using 64 samples per pixel is not
four times slower than 16 samples. The render time is more driven by the number of shading
samples per pixel.

2.1.3 Post Processing 2d Motion Blur

Finally we have motion blur as a post process. It works by using pixel motion vectors stored
by the rendering phase and “smearing” these into a visual simulation of motion blur.

Like using the rasterizer, this means that features such as mirror images or even objects
seen through foreground transparent object will “streak” together with the foreground object.
Furthermore, since the motion frame buffer only stores one segment, the “streaks” are always
straight, never curved.

The major advantage of this method is rendering speed. Scene or shader complexity has no
impact. The blur is applied as a mental ray “output shader”, which is executed after the main
rendering pass is done. The execution time of the output shader depends on how many pixels
need to be blurred, and how far each pixel needs to be “smeared”.

2.2 Considerations when Using 2d Motion Blur

2.2.1 Rendering Motion Vectors

The scene must be rendered with the motion vectors frame buffer enabled and filled with
proper motion vectors. This is accomplished by rendering with motion blur turned on, but
with a shutter length of zero.

shutter 0 0

motion on

Note the order: “motion on” must come after “shutter 0 0”.

In older versions of mental ray the following construct was necessary:

motion on

shutter 0 0.00001

time contrast 1 1 1 1

Which means:

6 2 Motion Blur Shaders

• Setting a very very short but non-zero shutter length

• Using a time contrast of 1 1 1 1

If there is a problem and no motion blur is visible, try the above alternate settings.

2.2.2 Visual Differences - Opacity and Backgrounds

The 3d blur is a true rendering of the object as it moves along the time axis. The 2d blur is a
simulation of this effect by taking a still image and streaking it along the 2d on-screen motion
vector.

It is important to understand that this yields slightly different results, visually.

For example, an object that moves a distance equal to it’s own width during the shutter interval
will effectively occupy each point along it’s trajectory 50 percent of the time. This means the
motion blurred “streak” of the object will effectively be rendered 50 percent transparent, and
any background behind it will show through accordingly.

In contrast, an object rendered with the 2d motion blur will be rendered in a stationary
position, and then these pixels are later smeared into the motion blur streaks. This means that
over the area the object originally occupied (before being smeared) it will still be completely
opaque with no background showing through, and the “streaks” will fade out in both directions
from this location, allowing the background to show through on each side.

The end result is that moving objects appear slightly more “opaque” when using 2d blur vs
true 3d blur. In most cases and for moderate motion, this is not a problem and is never
perceived as a problem. Only for extreme cases of motion blur will this cause any significant
issues.

3D blur 2D blur

2.2.3 Shutters and Shutter Offsets

To illustrate this behavior of the mental ray shutter interval we use these images of a set of
still cones and two moving checkered balls that move such that on frame 0 they are over the
first cone, on frame 1 they are over the second cone, etc:

2.2 Considerations when Using 2d Motion Blur 7

Object at t=0 Object at t=1

When using 3d motion blur, the mental ray virtual cameras shutter open at the time set by
“shutter offset” and closes at the time set by “shutter”.

Here is the result with a shutter offset of 0 and a shutter of 0.5 - the objects blur “begins” at
t=0 and continues over to t=0.5:

3d blur, shutter open at t=0 and close at t=0.5

Now when using the 2d motion blur it is important to understand how it works. The frame
is rendered at the “shutter offset” time, and then those pixels are streaked both forwards and
backwards to create the blur effect, hence, with the same settings, this will be the resulting
blur:

2d blur, shutter offset=0, mip motionblur shutter=0.5

Note this behavior is different than the 3d blur case! If one need to mix renderings done with
both methods, it is important to use such settings to make the timing of the blur
identical.

This is achieved by changing the “shutter offset” time to the desired center time of the blur
(in our case t=0.25), like this:

8 2 Motion Blur Shaders

shutter 0.25 0.25

motion on

2d blur, shutter offset=0.25, mip motionblur shutter=0.5

Note how this matches the 3d blurs setting when shutter offset is 0. If, however, the 3d blur
is given the shutter offset of 0.25 and shutter length 0.5 (i.e. a “shutter 0.25 0.75” statement),
the result is this:

3d blur, shutter open at t=0.25 and close at t=0.75

Hence it is clear that when compositing renders done with different methods it is very important
to keep this difference in timing in mind!

2.3 The mip motionblur Shader

The mip motionblur shader is a mental ray output shader for performing 2.5d2 motion blur
as a post process.

declare shader "mip_motionblur" (

scalar "shutter",

scalar "shutter_falloff",

boolean "blur_environment",

scalar "calculation_gamma",

scalar "pixel_threshold",

scalar "background_depth",

boolean "depth_weighting",

2Called “2.5d” since it also takes the Z-depth relationship between objects into account

2.3 The mip motionblur Shader 9

string "blur_fb",

string "depth_fb",

string "motion_fb",

boolean "use_coverage"

)

version 1

apply output

end declare

shutter is the amount of time the shutter is “open”. In practice this means that after the
image has been rendered the pixels are smeared into streaks in both the forward and backward
direction, each a distance equal to half the distance the object moves during the shutter time.

shutter falloff sets the drop-off speed of the smear, i.e. how quickly it fades out to
transparent. This tweaks the “softness” of the blur:

falloff = 1.0

falloff = 2.0

falloff = 4.0

Notice how the highlight is streaked into an almost uniform line in the first image, but tapers
off much more gently in the last image.

10 2 Motion Blur Shaders

It is notable that the perceived length of the motion blur diminishes with increased falloff, so
one may need to compensate for it by increasing the shutter slightly.

Therefore, falloff is especially useful when wanting the effect of over-bright highlights
“streaking” convincingly: By using an inflated shutter length (above the cinematic default
of 0.5) and a higher falloff, over-brights have the potential to smear in a pleasing fashion.

blur environment defines if the camera environment (i.e. the background) should be blurred
by the cameras movement or not. When on, pixels from the environment will be blurred, and
when off it will not. Please note that camera driven environment blur only works if “scanline”
is off in the options block.

If the background is created by geometry in the scene, this setting does not apply, and the
backgrounds blur will be that of the motion of said geometry.

calculation gamma defines in what gamma color space blur calculations take place. Since
mental ray output shaders are performed on written frame buffers, and these buffers (unless
floating point) already have any gamma correction applied, it is important that post effects
are applied with the appropriate gamma.

If you render in linear floating point and plan to do the proper gamma correction at a later
stage, set calculation gamma to 1.0, otherwise set it to the appropriate value. The setting
can also be used to artistically control the “look” of the motion blur, in which a higher gamma
value favors lightness over darkness in the streaks.

Various gammas

2.3 The mip motionblur Shader 11

Notice how the low gamma examples seem much “darker”, and how the blur between the
green box and red sphere looks questionable. The higher gamma values cause a smoother
blend and more realistic motion blur. However, it cannot be stressed enough, that if gamma
correction is applied later in the pipeline the calculation gamma parameter should be kept at
1.0, unless one really desires the favoring of brightness in the blur as an artistic effect.

The pixel threshold is a minimum motion vector length (measured in pixels) an object must
move before blur is added. If set to 0.0 it has no effect, and every object even with sub-pixel
movement will have a slight amount of blur. While this is technically accurate, it may cause
the image to be perceived as overly blurry.

For example, a cockpit view from a low flying jet plane rushing away towards a tropical island
on the horizon may still add a some motion blur to the island on the horizon itself even though
its movement is very slight. Likewise, blur is added even for an extremely slow pan across an
object. This can cause things to be perceived slightly “out of focus”, which is undesirable.
This can be solved by setting pixel threshold to e.g. 1.0, which in effect subtracts one pixel
from the length of all motion vectors and hence causing all objects moving only one pixel (or
less) between frames not to have any motion blur at all. Naturally, this value should be kept
very low (in the order of a pixel or less) to be anywhere near realistic, but it can be set to
higher value for artistic effects.

The background depth sets a distance to the background, which helps the algorithm figure
out the depth layout of the scene. The value should be about as large as the scene depth,
i.e. anything beyond this distance from the camera would be considered “far away” by the
algorithm.

If depth weighting is off, a heuristic algorithm is used to depth sort the blur of objects.
Sometimes the default algorithm can cause blur of distant objects imposing on blurs of nearby
objects. Therefore an alternate algorithm is available by turning depth weighting on. This
causes objects closer to the camera than background depth to get an increasingly “opaque”
blur than further objects, the closer objects blurs much more likely to “over-paint” further
objects blurs. Since this may cause near-camera objects blurs to be unrealistically opaque, the
option defaults to being off. This mode is most useful when there is clear separation between
a moving foreground object against a (comparatively) static background.

blur fb sets the ID3 of the frame buffer to be blurred. An empty string (“”) signifies the
main color frame buffer. The frame buffer referenced must be a RGBA color buffer and must
be written by an appropriate shader.

depth fb sets the ID of the frame buffer from which to obtain depth information. An empty
string (“”) signifies the main mental ray z depth frame buffer. The frame buffer referenced
must be a depth buffer and must be written by an appropriate shader.

motion fb works identically to depth fb but for the motion vector information, and the
empty string here means the default mental ray motion vector frame buffer. The frame buffer

3This parameter is of type string to support the named frame buffers introduced in mental ray 3.6. If
named frame buffers are not used, the string will need to contain a number, i.e. “3” for frame buffer number
3.

12 2 Motion Blur Shaders

referenced must be a motion buffer and must be written by an appropriate shader.

use coverage, when on, utilizes information in the “coverage” channel rather than the alpha
channel when deciding how to utilize edge pixels that contain an anti-aliased mix between two
moving objects.

2.4 Using mip motionblur

As mentioned before, the shader mip motionblur requires the scene to be rendered with motion
vectors:

shutter 0 0

motion on

The shader itself must also be added to the camera as an output shader:

shader "motion_blur" "mip_motionblur" (

"shutter" 0.5,

"shutter_falloff" 2.0,

"blur_environment" on

)

camera "...."

output "+rgba_fp,+z,+m" = "motion_blur"

...

end camera

The shader requires the depth (“z”) and motion (“m”) frame buffers and they should either
both be interpolated (“+”) or neither (“-”). The shader is optimized for using interpolated
buffers but non-interpolated work as well.

If one wants to utilize the feature that the shader properly preserves and streaks over-brights
(colors whiter than white) the color frame buffer must be floating point (“rgba fp”), otherwise
it can be plain “rgba”.

2.4.1 Multiple Frame Buffers and Motion Blur

If one is working with shaders that writes to multiple frame buffers one can chain multiple
copies of the mip motionblur shader after one another, each referencing a different blur fb,
allowing one to blur several frame buffers in one rendering operation. Please note that only
color frame buffers can be blurred!

2.5 The mip motion vector Shader 13

Also please note that for compositing operations it is not recommended to use a calcula-
tion gamma other than 1.0 because otherwise the compositing math may not work correctly.
Instead, make sure to use proper gamma management in the compositing phase.

2.4.2 Good Defaults

Here are some suggested defaults:

For a fairly standard looking blur use shutter of 0.5 and a shutter falloff of 2.0.

For a more “soft” looking blur turn the shutter up to shutter 1.0 but also increase the
shutter falloff to 4.0.

To match the blur of other mental ray renders, remember to set the mental ray shutter offset
(in the options block) to half of that of the shutter length set in mip motionblur. To match
the motion blur to match-moved footage (where the key frames tend to lie in the center of the
blur) use a shutter offset of 0.

2.5 The mip motion vector Shader

Sometimes one wishes to do compositing work before applying motion blur, or one wants
to use some specific third-party motion blur shader. For this reason the mip motion vector
shader exists, the purpose of which is to export motion in pixel space (mental ray’s standard
motion vector format is in world space) encoded as a color.

There are several different methods of encoding motion as a color and this shader supports
the most common.

Most third party tools expect the motion vector encoded as colors where red is the X axis and
green is the Y axis. To fit into the confines of a color (especially when not using floating point
and a color only reaches from black to white) the motion is scaled by a factor (here called
max displace) and the resulting -1 to 1 range is mapped to the color channels 0 to 1 range.

The shader also support a couple of different floating point output modes.

The shader looks as follows:

declare shader "mip_motion_vector" (

scalar "max_displace" default 50.0,

boolean "blue_is_magnitude",

integer "floating_point_format",

boolean "blur_environment",

scalar "pixel_threshold",

string "result_fb",

14 2 Motion Blur Shaders

string "depth_fb",

string "motion_fb",

boolean "use_coverage"

)

version 2

apply output

end declare

The parameter max displace sets the maximum encoded motion vector length, and motion
vectors of this number of pixels (or above) will be encoded as the maximum value that is
possible to express within the limit of the color (i.e. white or black).

To maximally utilize the resolution of the chosen image format, it is generally advised to use
a max displace of 50 for 8 bit images (which are not really recommended for this purpose)
and a value of 2000 for 16 bit images. The shader outputs an informational statement of the
maximum motion vector encountered in a frame to aid in tuning this parameter. Consult the
documentation for your third party motion blur shader for more detail.

If the max displace is zero, motion vectors are encoded relative to the image resolution, i.e.
for an image 600 pixels wide and 400 pixels high, a movement of 600 pixels in positive X is
encoded as 1.0 in the red channel, a movement 600 pixels in negative X is encoded as 0.0. A
movement in positive Y of 400 pixels is encoded as 1.0 in the blue channel etc4.

blue is magnitude, when on, makes the blue color channel represent the magnitude of the
blur, and the red and green only encodes the 2d direction only. When it is off, the blue channel
is unused and the red and green channels encode both direction and magnitude. Again, consult
your third party motion blur shader documentation5.

If floating point format is nonzero the shader will write real, floating point motion vectors
into the red and green channels. They are not normalized to the max displace length, not
clipped and will contain both positive and negative values. When this option is turned on
neither max displace nor blue is magnitude has any effect.

Two different floating point output formats are currently supported:

• 1: The actual pixel count is written as-is in floating point.

• 2: The pixel aspect ratio is taken into account6 such that the measurement of the
distance the pixel moved is expressed in pixels in the Y direction, the X component will
be scaled by the pixel aspect ratio.

More floating point formats may be added in the future.
4This mode will not work with 8 bit images since they do not have sufficient resolution.
5ReVisionFX “Smoothkit” expects vectors using blue is magnitude turned on, whereas their “ReelSmart

Motion Blur” do not.
6Compatible with Autodesk Toxik.

2.6 Using mip motion vector 15

When blur environment is on, motion vectors are generated for the empty background area
controlled by the camera movement. This option does not work if the scanline renderer is
used.

The pixel threshold is a minimum motion vector length (measured in pixels) an object must
move before a nonzero vector is generated. In practice, this length is simply subtracted from
the motion vectors before they are exported.

result fb defines the frame buffer to which the result is written. If it is unspecified (the empty
string) the result is written to the standard color buffer. However, it is more useful to define
a separate frame buffer for the motion vectors and put its ID here. That way both the beauty
render and the motion vector render are done in one pass. It should be a color buffer, and
should not contain anything since it’s contents will be overwritten by this shader anyway.

depth fb sets the ID of the frame buffer from which to obtain depth information. An empty
string (“”) signifies the main mental ray z depth frame buffer. The frame buffer referenced
must be a depth buffer and must be written by an appropriate shader.

motion fb works identically to depth fb but for the motion vector information, and the
empty string here means the default mental ray motion vector frame buffer. The frame buffer
referenced must be a motion buffer and must be written by an appropriate shader.

2.6 Using mip motion vector

The same considerations as when using mip motionblur (page 12) about generating motion
vectors, as well as the discussion on page 6 above about the timing difference between post
processing motion blur vs. full 3d blur both apply.

Furthermore, one generally wants to create a separate frame buffer for the motion vectors,
and save them to a file. Here is a piece of pseudo .mi syntax:

options ...

...

export motion vectors

shutter 0 0

motion on

...

Create a 16 bit frame buffer for the motion vectors

frame buffer 0 "rgba_16"

end options

...

shader "motion_export" "mip_motion_vectors" (

"max_displace" 2000,

"blur_environment" on,

16 2 Motion Blur Shaders

our frame buffer

"result_fb" "0"

)

...

camera "...."

The shader needs z, m

output "+z,+m" = "motion_export"

Write buffers

output "+rgba" "tif" "color_buffer.tif"

output "fb0" "tif" "motion_buffer.tif"

...

end camera

Chapter 3

Card/Opacity Shader

3.1 Introduction

When doing rendering that requires no form of post production, transparency requires no
special consideration. One simply adds a transparency shader of some sort, and mental ray
will render it correctly, and all is well.

However, as soon as one begins performing post production work on the image, and one is
rendering to multiple frame buffers, even if simply using mental ray’s built in frame buffers such
as “z” (depth) or “m” (motion vectors), special thought must be put into how transparency
is handled.

In general, mental ray collects it’s frame buffer data from the eye ray, i.e. the ray shot by the
camera that hits the first object. So the z-depth, motion vector etc. will come from this first
object.

What if the first object hit is completely transparent? Or is transparent in parts, such as an
image of a tree mapped to a flat plane and cut out with an opacity mask, standing in front of
a house1?

When using most other transparency related shaders it is most likely that even though a tree
is quite correctly visible in the final rendering and you can see the house between the branches,
the “z” (depth) (and other frame buffers) will most likely contain the depth of the flat plane!
For most post processing work, this is undesirable.

To solve this problem the mental ray API contains a function called mi trace continue which
continues a ray “as if the intersection never happened”. The shader mip card opacity utilizes
this internally, and switches between “standard” transparency and using mi trace continue to
create a “totally” transparent object at a given threshold.

1Using flat images to represent complex objects is known as putting things on “cards” in the rendering
industry, hence the name of the shader

18 3 Card/Opacity Shader

3.2 mip card opacity

declare shader "mip_card_opacity" (

color "input",

boolean "opacity_in_alpha",

scalar "opacity",

boolean "opacity_is_premultiplied",

scalar "opacity_threshold"

)

version 1

apply material

end declare

The input parameter is the color of the object.

If opacity in alpha is on, the alpha component of the input color is used as the opacity.

If opacity in alpha is off, the opacity parameter is used as the opacity.

If opacity is premultiplied is on, the input color is assumed to already be premultiplied
with the opacity value. If it is off, the input color will be attenuated (multiplied by) the
opacity value before being used.

Finally, the opacity threshold sets the opacity level where the shader switches from using
standard transparency to becoming “completely transparent”. Generally this should be kept
at 0.0, i.e. only totally transparent pixels are indeed treated as “not even there”, but if one
raises this value more and more “opaque” pixels will be considered “not there” for frame
buffers. Note that the actual visible rendered result is identical, only the contents of other
frame buffers than the main color frame buffer is affected by this.

Chapter 4

Ray Type Switching Shaders

4.1 Generic Switchers

The mip rayswitch and mip rayswitch advanced utility shaders allows different types of rays
to return different results. There are many cases in which this can be useful, including but
not limited to:

• Separating primary and secondary rays into calls to other shader.

• Returning a different environment to eye rays (i.e. a photographic background plate for
screen background), reflection rays (i.e. a spherical high resolution environment to be
seen in reflections) and final gather rays (a filtered environment suitable for lighting the
scene).

• Limiting time consuming shaders where they are nearly invisible (avoiding a complicated
secondary illumination or ambient occlusion shader in the refractions seen through
frosted glass)

The mip rayswitch shader is a simple shader that accepts a set of other colors (generally set
to other subshaders) to apply for certain classes of rays.

declare shader "mip_rayswitch" (

color "eye",

color "transparent",

color "reflection",

color "refraction",

color "finalgather",

color "environment",

color "shadow",

color "photon",

20 4 Ray Type Switching Shaders

color "default"

)

version 1

apply material, texture, environment

end declare

For primary rays, eye sets the result for eye rays.

For secondary rays, transparent is the result for transparency rays, reflection for reflection
rays and environment for environment rays.

The finalgather is the result for final gather rays as well as child rays to final gather rays.

Similarly, shadow is the result for shadow rays, photon catches all photon rays.

Finally, the default is the result for any other ray type. It is not a fall-through default,
however, each of the above returns their respective result whether connected to a shader or
not (i.e. generally 0 0 0 0 black).

If one wants fall-through defaults, one must use the advanced version of the shader:

declare shader "mip_rayswitch_advanced" (

shader "eye",

shader "transparent",

shader "reflection",

shader "refraction",

shader "finalgather",

shader "environment",

shader "any_secondary",

shader "shadow",

shader "photon",

shader "default"

)

version 1

apply material, texture, environment

end declare

This shader works very similar to mip rayswitch, but instead of accepting inputs of type
“color”, it accepts inputs of type “shader”.

While this no longer allows assigning a fixed color directly, it instead allows fall-through
defaults.

Each of the parameters works in a similar way: eye is the shader for eye rays, transparent
for transparency rays, reflection for reflection rays, refraction for refraction rays, etc.

The difference is if one of these shaders are not specified, one of the fall-through cases take over.
If either of the specific secondary ray type shaders are not specified, and a ray of that type

4.3 Render Stage Switcher 21

arrives, the any secondary acts as a catch-all for all the secondary ray types not explicitly
set.

Similarly, the default parameter works as a catch all for every unspecified shader above it.

4.2 Environment Switcher

A classical issue one runs into with mental ray is that there is simply a single concept of
“the environment”, whereas one often, in practical use, wants to separate the concept of a
background to that of an environment.

This shader accomplishes exactly that:

declare shader "mip_rayswitch_environment" (

color "background" default 0 0 0 0,

color "environment" default 0 0 0 0,

)

apply texture, environment

version 1

end declare

The shader returns background for any eye ray, transparency ray that is a child of an eye
ray, or any refracted ray that travels in the same direction as said transparency ray would (i.e.
rays of type miRAY REFRACT, but that was refracted by an IOR of 1.0 and is a direct child
of an eye ray).

For any other type of rays (reflection, refraction, final gathering etc.) the shader returns the
environment color.

The shader is intended to be used as the camera environment, but will function anywhere in a
shading graph as a ray switching node, in many cases where one need to distinguish between
“primary” and “secondary” rays.

For example, this is the ideal shader to switch between primary- and secondary rays to support
the “best of both worlds” usage of mip matteshadow described on page 51.

4.3 Render Stage Switcher

Sometimes one desires to use different colors or subshaders depending on where in the rendering
pipeline mental ray is. For example, one may wish to make a certain material completely
opaque to final gather rays, or for a light to have a different color while emitting photons, or
similar.

declare shader "mip_rayswitch_stage" (

22 4 Ray Type Switching Shaders

color "unknown",

color "main_render",

color "finalgather_precomp",

color "ao_precomp",

color "caustic_photons",

color "globillum_photons",

color "importon_emit",

color "lightmapping"

)

version 1

apply material, texture, environment

end declare

The parameters all work in a similar way to all the other switcher shaders.

unknown is for any “unknown” stage. This should normally never be called, but exists as a
safety precaution to safeguard against any new rendering stages introduced in future mental
ray versions that are unknown at this time.

During the normal tile rendering pass, the shader returns the value of the main render input.

During finalgather precomputation phase, the shader returns the value of final-
gather precomp.

During ambient occlusion precomputation phase, the shader returns the value of ao precomp.
Note that mental ray 3.7 does not call shaders at all during this phase, so this will never be
called - but future versions of mental ray may act differently.

During caustic and global illumination photon tracing, the values for caustic photons and
globillum photons inputs are used respectively.

During the importon emission phase, the value from importon emit is used.

Finally, during the light mapping preprocessing phase (used, for example, by the subsurface
scattering shaders) the value in lightmapping is used.

Chapter 5

Utility Shaders

5.1 Gamma/Gain Nodes

declare shader "mip_gamma_gain" (

color "input",

scalar "gamma" default 1.0,

scalar "gain" default 1.0,

boolean "reverse" default off,

)

apply texture, environment, lens

version 1

end declare

This is a simple shader that applies a gamma and a gain (multiplication) if a color. Many
similar shaders exists in various OEM integrations of mental ray, so this shader is primarily
of interest for standalone mental ray and for cross platform phenomena development.

If reverse is off, the shader takes the input, multiplies it with the gain and then applies a
gamma correction of gamma to the color.

If reverse is on, the shader takes the input, applies a reverse gamma correction of gamma
to the color, and then divides it with the gain; i.e. the exact inverse of the operation for when
reverse is off.

The shader can also be used as a simple gamma lens shader, in which case the input is not
used, the eye ray color is used instead.

24 5 Utility Shaders

5.2 Render Subset of Scene

This shader allows re-rendering a subset of the objects in a scene, defined by material,
geometric objects, or instance labels. It is the ideal “quick fix” solution when almost everything
in a scene is perfect, and just this one little object or one material needs a small tweak1.

It is applied as a lens shader and works by first testing which object an eye-ray hits, and only
if the object is part of the desired subset is it actually shaded at all.

Pixels of the background and other objects by default return transparent black (0 0 0 0),
making the final render image ideal for compositing directly on top of the original render.

So, for example, if a certain material in a scene did not turn out satisfactory, one can simply:

• Modify the material.

• Apply this lens shader and choosing that material.

• Render the image (at a fraction of the time of re-rendering the whole image).

• Composite the result on top of the original render!

An example of using mip render subset on one material

Naturally, only pixels which see the material “directly” are re-rendered, and not e.g. reflections
in other objects that show the material.

The shader relies on the calling order used in ray tracing and does not work correctly (and
yields no benefit in render time) when using the rasterizer, because the rasterizer calls lens
shaders after already shading the surface(s).

declare shader "mip_render_subset" (

boolean "enabled" default on,

array geometry "objects",

array integer "instance_label",

material "material",

1And the client is on his way up the stairs.

5.2 Render Subset of Scene 25

boolean "mask_only" default off,

color "mask_color" default 1 1 1 1,

color "background" default 0 0 0 0,

color "other_objects" default 0 0 0 0,

boolean "full_screen_fg" default on

)

apply lens

version 5

end declare

enabled turns the shader on or off. When off, it does nothing, and does not affect the
rendering in any way.

objects, instance label and material are the constraints one can apply to find the subset
of objects to shade. If more than one constraint is present, all must be fulfilled, i.e. if both
a material and three objects are chosen, only the object that actually have that material will
be shaded.

If one do not want to shade the subset, but only find where it is on screen, one can turn on
mask only. Instead of shading the objects in the subset, the mask color is returned, and
no shading whatsoever is performed, which is very fast.

Rays not hitting any objects return the background color, and rays hitting any object not
in the subset return the other objects color.

Finally, the full screen fg decides if the FG preprocess should apply to all objects, or only
those in the subset. Since FG blends neighboring FG samples, it is probable that a given
object may use information in FG points coming from nearby objects not in the subset. This
is especially true if the objects are coplanar. Therefore it is advised to let the FG pre-pass
“see” the entire scene.

Naturally, turning off this option and creating FG points only for the subset of objects is
faster, but there is a certain risk of boundary artifacts, especially in animations. If the scene
uses a saved FG map, this option can be left off.

26 5 Utility Shaders

5.3 Binary Proxy

This shaders allows a very fast way to implement demand loaded geometry. It’s main goal
is performance, since it leapfrogs any form of translation or parsing by directly writing to a
binary file format which can be sucked directly into RAM at render time. There are many
other methods to perform demand loading in mental ray (assemblies, file objects, geometry
shaders, etc.) but this may require specific support in the host application, and generally
involves parsing or translation steps that can impact performance.

To use it, the shader is applied as a geometry shader in the scene. See the mental ray manual
about geometry shaders.

declare shader

geometry "mip_binaryproxy" (

string "object_filename",

boolean "write_geometry",

geometry "geometry",

scalar "meter_scale",

integer "flags"

)

version 4

apply geometry

end declare

object filename is the filename to read (or write). By convention, the file extension is “.mib”
for “mental images binary”.

The shader has a “read” mode and a “write” mode:

• When the boolean write geometry is on and the geometry parameter points to an
instance of an existing scene object, this object will be written to the .mib file named
by object filename.

• When write geometry is off, the geometry parameter is ignored (not used). Instead,
a mental ray placeholder object is created by the shader which contains a callback that
will load the actual geometry from the file on demand (generally when a ray hits it’s
bounding box, although mental ray may choose to load it for other reasons at other
times).

The meter scale allows the object to be interpreted in a unit independent way. If this is
0.0, the feature is not used. When used, the value should be the number of scene units that
represent one meter, i.e. if scene units are millimeters this would be 1000.0 etc.

When writing (write geometry is on), this value is simply stored as meta data in the .mib
file. When reading (write geometry is off) the object is scaled by the ratio of the value

5.4 FG shooter 27

stored in the file and the value passed at “read time”, to account for the difference in unit, if
any.

The flags parameter is for algorithm control and should in most cases be left to 0. It is a bit
flag, with each bit having a specific meaning.

Currently used values are:

1 Force use of “assemblies” rather than “placeholders”. These are two slightly different
internal techniques that mental ray uses to demand-load objects. See the mental ray
manual for more information. Note that assemblies only work with BSP2 acceleration,
and that multiple instances of the same assembly cannot have different materials or
object flags applied. This limitation does not exist for placeholders.

2 “Auto-assemblies” mode. The shader uses assemblies if BSP2 acceleration is used,
placeholders if not.

4 Do not tessellate the object before writing it. The object is written in it’s raw format.
The object must already be a mental ray primlist (miBox) for this to work. When this
bit is set, displacement will not be baked to the file. When it is not set (the default)
displacement will be baked2

All other bits should be kept zero, since they may become meaningful in future versions.

5.4 FG shooter

This shader is used to “shoot” finalgather (FG) rays into the scene in a determined way,
forcing to place FG points at specific locations irrespective of mental ray.

Normally, without this shader, during mental ray’s final gather precomputation stage eye rays
are shot through the camera into the scene, and FG points are placed in the scene according
to the current view of the render camera. One advantage is, that the density of FG points is
relative to image space, thus automatically adaptive to the visible areas of interest.

However, in camera animations the location of FG points will actually move along with the
camera. This can potentially cause artifacts in certain situations - especially if the camera
moves slowly, or only moves a little (e.g. in a small pan, dolly, tilt, truck or crane move).

The “FG Shooter” shader exists to safeguard for this eventuality; it allows using one or more
fixed transformation matrices as the root location from which to “shoot” eye rays during the
final gather precomputation phase only. This guarantees that even if the actual render camera
moves the FG points will keep their positions, as determined by the given matrix or matrices.

2Note that when baking displacement, a view-dependent approximation can not be used. This is because
there is no view set up at the time when this shader executes, so the resulting tessellation will turn out very
poor.

28 5 Utility Shaders

declare shader "mip_fgshooter" (

integer "mode",

array transform "trans"

)

version 1

apply lens

end declare

The trans parameter contains an array of transformation matrices, defining how the eye
rays are shot during the final gather prepass. Instead of using the camera to calculate the
“eye” rays, they are shot from the 0,0,0 point, mapping the screen plane to the unit square
surrounding the point 0,0,-1 and then transformed by the passed matrix (or matrices) into
world space.

The mode parameter defines how the matrix (or matrices) passed are displayed during the
final gather prepass. Since how it is displayed impacts the adaptivity, this has some functional
implications.

• 0 breaks the render into “subframes, each containing the image as seen from a given
position. This requires a higher final gather density to resolve the same number of
details, but gives the best adaptivity.

• 1 stacks the different results on top of each other. This does not require any additional
density, but the final gather adaptivity does not work as well.

• 2 works like 1, but only visibly displays one pass (but all the others are calculated exactly
the same)

Chapter 6

Mirror/Gray Ball Shaders

6.1 Introduction

In the visual effects industry it is common to shoot a picture of a mirror ball (aka a “light
probe”) on set, as well as a gray ball for lighting reference.

Ideally, one shoots these at multiple exposures and uses a tool 1 to combine these into a single
high dynamic range image and/or unwrap the mirrored/gray ball into a spherical environment
map.

However, it is often difficult to regain the proper orientation of spherical map so it matches
the camera used to render the CG scene. Furthermore, a single photo of a mirror/gray ball
contains poor data for certain angles that one want to avoid seeing in the final render.

These shaders are intended to simplify a special case: When the mirror/gray ball is already
shot from the exact camera angle that the final image will be rendered from.

It simply utilizes the mental ray camera coordinate space and applies the mirror/gray ball in
this space, hence the orientation of the reflections will always ’stick’ to the rendering camera.

6.2 Mirror Ball

This shader is intended as an environment shader, since it looks up based on the ray direction.
It will map the proper direction to a point on the mirrored ball and retrieve its color.

declare shader "mip_mirrorball" (

color texture "texture",

1For example Photosphere (Mac) or HDRShop (PC)

30 6 Mirror/Gray Ball Shaders

scalar "multiplier" default 1.0,

scalar "degamma" default 1.0,

scalar "blur" default 0.0,

)

apply texture, environment

version 3

end declare

The texture parameter should point to an image of a mirrored ball that is cropped so the
ball exactly touches the edges of the image. Ideally it should point directly to a mental ray
color texture but it can also be another shader.

If necessary, the shader can apply an inverse gamma correction to the texture by the degamma
parameter. If gamma is handled by other shaders in the chain, or if the global mental ray
gamma is used, use a value of 1.0, which means “unchanged”.

The color is multiplied by the multiplier and if the texture parameter points to a literal
mental ray texture, the blur parameter can be used to blur it.

6.3 Gray Ball

This shader is can be used either as an environment shader or a texture shader, since it looks
up based on the direction of the surface normal. It will map the normal vector direction to a
point on the gray ball and retrieve its color.

declare shader "mip_grayball" (

color texture "texture",

scalar "multiplier" default 1.0,

scalar "degamma" default 1.0,

scalar "blur" default 0.0,

)

apply texture, environment

version 3

end declare

The parameters are identical to mip mirrorball.

6.4 Examples

Here are the photos used for the example renderings:

6.4 Examples 31

The mirror ball photo The gray ball photo

Here are a few objects with an environment made using mip mirrorball. The objects are
also lit by final gathering based on same environment:

One angle Another angle

What is noteworthy in the above images is how the orientation of reflections stay constant
parallel to the camera. Therefore, this shader is only intended to be used when the rendering
camera direction (roughly) matches the direction from which the mirror ball was photographed.

When using the gray ball shader:

32 6 Mirror/Gray Ball Shaders

Raw mip grayball shader Using ambient occlusion

The left image is the raw output of the mip grayball shader, but in the right the shader is
put into the bright slot of the mib amb occlusion shader, where it is occluded and looked
up with bent normals2.

More usage tips can be found on page 39.

2If one do not desire the bent normal lookup of mib amb occlusion, set its mode parameter to -1. Then
the bright parameter is looked up using the original (un-bent) normal, which can yield a smoother result.

Chapter 7

Matte/Shadow Objects and Camera
Maps

7.1 Introduction

Often one wants to include synthetic1 objects into an existing photographic background plate
filled with real world objects, for example, adding a yet-to-be-constructed building into an
empty lot, adding a virtual car onto a road, or having a virtual character walk through a
scene and realistically interact with objects in the real world scene.

Two main shaders exists to facilitate this, mip cameramap, which “projects” an image from
the camera onto geometry, and mip matteshadow which takes care of generating hold-out
mattes, as well as allowing the real world objects in the photographic plate both cast and
receive shadows, as well as receive reflections and indirect light.

7.2 mip cameramap

This shader is used to look up a color texture based on the surface points on-screen pixel
coordinate. The shader is similar in function to mib lookup background from the base
library, but with the following important differences:

• The coordinate being looked up is the true “back transformation” of the shading point
into raster space, rather than just the current rendered pixels raster position. This
means that the background is correctly seen in reflections and refractions.

• It can perform a “per pixel” match, avoiding blurring of the background due to
interpolation.

1When we use the term “synthetic” we mean additional objects to be inserted in the scene, and “real world”
for objects that are already there.

34 7 Matte/Shadow Objects and Camera Maps

declare shader "mip_cameramap" (

color texture "map",

scalar "multiplier" default 1.0,

scalar "degamma" default 1.0,

boolean "per_pixel_match" default off,

boolean "transparent_alpha" default off,

boolean "offscreen_is_environment" default on,

color "offscreen_color"

)

version 4

apply material, texture, environment

end declare

The map parameter is a color texture to be looked up, and multiplier a multiplier for that
map.

If necessary, the shader can apply an inverse gamma correction to the texture by the degamma
parameter. If gamma is handled by other shaders in the chain, or if the global mental ray
gamma is used, use a value of 1.0, which means “unchanged”.

When per pixel match is off, the texture is simply stretched to fill the scene exactly. When
per pixel match is on, the lower left pixel of the map is exactly matched to the lower left
rendered pixel. If the pixel size of the map and the pixel size of the rendering is different a
warning is printed, but the image is still rendered although the image will be cropped/padded
as needed.

Sometimes one wants the shader applied as a background, but still want to extract information
from the alpha channel. If transparent alpha is on, the alpha values is always zero. If it is
off, the alpha value from the texture is used.

The shader performs a true “reverse transform” of the shading point into raster space. While
this by necessity results in an on-screen location for eye rays, this is not so for reflections,
refractions etc. These rays may hit a point on the object which is off screen. If the
offscreen is environment is on, these rays will return the environment. If it is off, the
offscreen color is returned. In either case, this color is not affected by neither the multiplier
nor gamma.

7.3 mip matteshadow

This shader is used to create “matte objects”, i.e. objects who is used to “represent” existing
real world objects in an existing photographic plate, for the purposes of...

• ...blocking another synthetic object from the cameras view (to allow the synthetic objects
to go behind the real world object).

• ...allowing synthetic objects to cast shadows and occlusion on and receive shadows from
the real world objects.

7.3 mip matteshadow 35

• ...adding reflections of synthetic objects onto real world objects.

• ...allow the interplay of indirect light between synthetic and real world objects.

In all above cases the mip matteshadow is applied to an object representing the real world
object, and the synthetic object is using a traditional material.

The shader can also function as a “shadows only” shader, i.e. a shader which only shows how
much in shadow a point is compared to the incoming light, but ignoring the actual amount of
incoming light itself (only the occluded percentage of it).

declare shader

struct {

color "result",

color "shadows_raw",

color "ao_raw",

color "refl_raw",

color "indirect_raw",

color "illumination_raw"

} "mip_matteshadow" (

color "background" default 0 0 0 0,

Shadows

boolean "catch_shadows" default on,

color "shadows" default 0 0 0 1,

color "ambient" default 0.2 0.2 0.2,

boolean "no_self_shadow" default on,

boolean "use_dot_nl" default on,

scalar "colored_shadows" default 1.0,

AO

boolean "ao_on" default on,

color "ao_dark" default 0.0 0.0 0.0,

integer "ao_samples" default 16,

scalar "ao_distance" default 0.0,

Reflections

boolean "catch_reflections" default off,

color "refl_color" default 0.2 0.2 0.2 0.2,

color "refl_subtractive" default 0.2 0.2 0.2 0.2,

integer "refl_samples" default 0,

scalar "refl_glossiness" default 10.0,

scalar "refl_max_dist" default 0.0,

scalar "refl_falloff" default 2.0,

Indirect

boolean "catch_indirect" default off,

color "indirect",

System

boolean "multiple_outputs" default off,

Additional illumination

boolean "catch_illuminators" default off,

array light "illuminators",

Extra input

color "additional_color" default 0 0 0,

36 7 Matte/Shadow Objects and Camera Maps

Light linking

integer "mode",

array light "lights"

)

version 6

apply material, texture

end declare

NOTE: This section will only briefly lists the parameters and the section “usage tips” on
page 39 gives an in depth explanation of different use cases.

The shader has multiple outputs (it returns a struct). However, by default (for compatibility
reasons) it only fills in the first item of the struct, the compound “result”. Only if the
parameter multiple outputs is enabled are the separate results written to the other outputs.

The background parameter is the background color. If neither of the catch ... options are
on, this result is simply returned, including its alpha, and the shader does nothing. Otherwise
it is the base color upon which all the other operations occur. When using external compositing
this is generally transparent black (0 0 0 0), otherwise one would use the real world background
plate mapped with the mip cameramap shader.

The catch shadows option enables other objects to cast shadows on this object.

The shadows parameter is the color of the shadows. When shadows are detected, a blend
between background and shadows depending on how much “in shadow” the point is.

The ambient parameter sets a “base light level”. It raises the lowest “in shadow” level. For
example, if this is 0.2 0.2 0.2 the darkest shadow produced will be an 20 percent blend of
background to a 80 percent blend of shadow (unless ambient occlusion is enabled).

Turning on the no self shadow option (and also using an instance of the shader as shadow
shader) causes any object using mip matteshadow not to receive shadows on any other such
object.

The use dot nl option defines if the angle to the light is considered when calculating the
incoming amount or not.

If color shadows is 0.0, all shadows are cast in gray scale. If it is 1.0, the shadows have full
color. For example, if the surface is lit by one red and one green light, the red light will have
a green shadow, and the green light will have a red shadow.

If ao on is enabled, a built in Ambient Occlusion (henceforth simply called “AO”) is applied
based on the color in the ambient parameter. The AO respects the no self shadow switch
and will not cause AO from objects with the same material instance as itself.

The ao dark parameter decides how dark shadows the AO will cause. The default black is
generally adequate, but a lighter color will cause a less pronounced shading effect.

7.3 mip matteshadow 37

ao samples number of AO rays are shot. One can limit the reach of the AO rays with
the ao distance parameter. If it is zero, the rays reach infinitely far. Short rays increase
performance dramatically but localizes the AO effect.

The catch reflections turns on reflections.

The refl color is the multiplier for reflections. Note that the alpha value of this color is
important in that the reflections will influence the alpha by this amount. In some cases the
reflections may need to be subtractive, in which case refl subtractive is used - see page 39
for details.

The refl samples parameters sets the number of glossy reflection samples. If it is zero, mirror
reflections are used. Otherwise the refl glossiness sets the ward glossiness for reflections.

Reflections are seen at most refl max dist and the shape of the falloff is refl falloff, very
similar like the base library’s shader mib glossy reflection.

If the option catch indirect is enabled, indirect light is gathered and scaled by the indirect
color (which one generally sets to the same as the background color, thereby treating the
background color as a reflectance value for the indirect light).

The multiple outputs causes the shader to output more than a single value in the returned
struct.

If the catch illuminators switch is on, the lights listed as illuminators are tested and
allowed to actually light the scene. This is a simple Lambertian illumination treating the
background parameter as the diffuse color2.

The additional color is a color input simply added to the result, for easy shader graph
construction. It can be used for anything3.

Finally, mode sets the light inclusion/exclusion mode and lights is the light list used for
casting shadows, just like in many other shaders.

The shader also has multiple outputs. For compatibility, the shader does not actually write
any values to anything but the main output if the multiple outputs parameter is not on.
But if this parameter is enabled, the shader outputs the following values:

• result - the compound result.

• shadows raw - the raw full-color shadow pass on white background, suitable for
compositing on top of a background in “multiply” mode.

2The difference between lights and illuminators is that the lights are only used to cause shadows on the
background, whereas the illuminators are used to throw actual light on it. This means that the lights array
should contain lights which are already present in the background plate, and the illuminators array contains
any additional lights introduced by a CG element, for example the headlights of a CG car.

3For example to add a specular highlight to an illuminator by plugging in a mib illum phong with it’s
diffuse color set to black.

38 7 Matte/Shadow Objects and Camera Maps

• ao raw - the raw ambient occlusion.

• refl raw - the raw reflections

• indirect raw - the indirect light arriving

• illumination raw - light gathered from any lights in the illuminators list.

All outputs are as “raw” as possible to be maximally useful as layers in post production, e.g.
the reflections have not been multiplied with the reflection color, etc.

7.4 mip matteshadow mtl

This is a material phenomena that embeds mip matteshadow, and applies it as surface, shadow
and photon shader for a material. It has the same parameters as mip matteshadow itself, plus
a scalar opacity.

The opacity does not apply to the shadows or photons, but only to the visible surface shading
itself. By using the opacity, one can use painted masks for irregular edges. For example,
use a simple tapered cylinder to roughly match a forearm, and use a camera-projected mask
(applied with the help of mip cameramap) for the actual contours of the arm. This also allows
matching motion blur that may be present in the background plate with the help of masks.

7.5 Usage Tips 39

7.5 Usage Tips

The shaders in this section are concerned with combining a real world photographic plate
with synthetic objects. For the sake of our examples, we are basing them on the following
photograph of a kitchen counter, with an old beat up plastic salt shaker, a spice jar, a piece of
paper, and some other things on it:

This is our background photograph. This is not a rendering... yet.

7.5.1 Camera Mapping Explained

What is the difference between mip cameramap and the mib lookup background from the base
library?

The main difference is that the former only uses the current raster position (i.e. x and y
coordinate of the pixel currently being rendered) whereas the latter actually calculates the
image space position of the shaded point.

Why does that matter? Lets try an example. See the following example of reflective sphere
on top of a background photograph mapped to a flat plane using the two different shaders:

40 7 Matte/Shadow Objects and Camera Maps

mib lookup background mip cameramap

Notice how the left image, which uses mib lookup background looks incorrect. It looks
transparent rather than reflective. What is the cause of this?

Imagine we are rendering pixel coordinate 200,200 which lies on the sphere. An eye ray is sent
that hits the sphere. This hit point is indeed on the 200,200 pixel coordinate. But the ray
continues as a reflection ray to hit the ground plane.

This new point (on the ground plane) is not the same as the pixel being rendered, it is
somewhere else in the model. Yet mib lookup background only concerns itself with the current
pixel (200,200) and will return the color at that point from the map.

Conversely, mip cameramap actually converts this new point to a new set of raster coordinates
(e.g. 129,145) and will look up the map at that new position, creating the correct appearance
in the reflection.

However, there is a snag; what happens if the reflected point lies outside the screen? What
if the calculated raster coordinate is (-45, 39)? The answer is that mip cameramap either
returns the specified color, or, if offscreen is environment is on, returns the environment
color for that ray direction.

7.5.2 Matte Objects and Catching Shadows

In this section we will use mip matteshadow to create stand-in objects (also known as “matte
objects”) for real world geometry. For the example we only concern ourself with the old plastic
salt shaker on the left of the image, and the kitchen counter itself. The following simple 3D
model has been constructed:

7.5 Usage Tips 41

The simple 3D model of our background

If we are not using mip matteshadow and for example simply attempt to map our background
to a standard Lambertian surface we get the following result:

Mapping the background onto a Lambert shader

Clearly unsatisfactory, since Lambertian shading is applied on top of shading already present
in the real world image. What we need is to separate shadows from the shading.

This can be done using use mip matteshadow. Lets show the result by applying the shader
with a white background and black shadows:

42 7 Matte/Shadow Objects and Camera Maps

Raw shadow information

This image contains the raw shadow information, and is otherwise white. This mode of
operation is very useful for external compositing usage, where a completely separate shadow
pass can be generated by making the synthetic objects invisible to the camera (the torus in
our case) and using mip shadowmatte with white background and black shadows.

NOTE: This usage supports colored shadows! With a red and green light present, the green
light will show red shadows and vice versa.

There is one problem with the above image: It contains a shadow of the salt shaker. But our
real-world picture already contains a shadow of the salt shaker. This is solved by the following
steps:

• Applying mip matteshadow as the shadow shader for the material.

• Turning its no self shadow option on.

7.5 Usage Tips 43

The mip matteshadow material does not shadow itself

When the shader is used as the materials shadow shader and the no self shadow is on, no
object with mip matteshadow will shadow another object with mip matteshadow, but will still
cast shadows on other objects, and other objects will cast shadows upon it.

Notice however that the shadows are very dark and the torus shadow thrown onto the salt
shaker has a harsh left edge. To solve this, one can set the ambient color to a low value and
turn on use dot nl which will make the shadows “fade out” as they become perpendicular
to the light, avoiding the harsh edge:

Lighter shadow and use dot nl on

At this point we can replace the white color with our background using mip cameramap:

44 7 Matte/Shadow Objects and Camera Maps

Background used instead of white

7.5.3 Advanced Catching of Shadows

Shadows can be handled in several ways with mip matteshadow. We already mentioned the
method above of creating a shadow pass using a white background and black shadows
setting.

We also showed the method of using a picture for background and black for shadows.

There are two other options, however:

One is to use a picture of the lit scene for background and another picture of the scene in
shadow for the shadow parameter.

The scene fully lit The scene in shadow

This technique is especially useful since it solves any self-shadowing issues perfectly, it is even
advised to have no self shadow off in this mode. Here is the result:

7.5 Usage Tips 45

Shadows come from unlit version of photo

This gives amazing detail and automatically gives the “correct” color and strength of shadows
without any tuning being necessary.

A final way is to handle shadows completely in external compositing. This is accomplished by
setting background to 0 0 0 0 (i.e. transparent black, alpha is zero) and shadow to 0 0 0 1
(i.e. opaque black, alpha is one).

This will create a rendering as follows:

The color channels The alpha channel

This image can be composited on top of the background externally since the shadow
information is present in the alpha channel.

7.5.4 Reflections

Since we are using mip cameramap reflections and refractions of the background objects work
correctly:

46 7 Matte/Shadow Objects and Camera Maps

Reflection and refraction

Note how even the reflection of the salt shaker is correct.

Note that this also means final gathering will pick up the background as indirect illumination
correctly:

Final gathering lights up our objects

7.5 Usage Tips 47

The shader can also show (glossy) reflections of other objects:

Glossy paper reflects our objects

Please note how the reflection only involves the actual synthetic objects added, the shader
already assumes that the real world photo contains reflections for the other real world objects,
i.e. a mip matteshadow object never reflects another, nor does it reflect the environment.

48 7 Matte/Shadow Objects and Camera Maps

One subtle detail is still missing, though. Notice how the cylinder is reflecting the paper, but
nothing else. This is because the mip matteshadow does not know what to do about rays
that hit the ground plane somewhere “off screen”.

No reflections

This is solved by using the offscreen is environment parameter of mip cameramap, and
then utilize an environment map (for example mip mirrorball) to supply an environment
map:

Much better

7.5 Usage Tips 49

The shader can also receive indirect light such as final gathering and (if also applied as photon
shader) photons. To demonstrate this we enable catch indirect and turn our white objects
luminous red and made sure our glass sphere generates caustics:

Receiving indirect light

As above, the shader makes sure no indirect light is bounced from one matte object to another,
and no indirect light is received from the environment (since both these effects are assumed
to be present in the original real-world photo).

50 7 Matte/Shadow Objects and Camera Maps

A final special case for reflection is when the background photo already contains massive
amounts of reflections. Here is a new background photo on top of a highly reflective surface:

Photograph of our salt shaker on a very reflective surface

If we add our synthetic objects to this scene and use the same settings we used for the glossy
paper, we get the following rather odd looking results:

Additive reflections - doesn’t look right

But this looks very incorrect! One can see the reflection of the background through the added
reflections, and the added reflections appear much too bright.

7.5 Usage Tips 51

To fix this one uses the refl subtract to set the amount of attenuation of the background
caused by the reflection. Naturally this can be a painted map to match reflective areas in the
image, i.e. a water puddle in front of a house etc.

Subtractive reflections - that’s much better!

The correct result. The synthetic reflections override the existing reflections and replace them!
Also note that even reflections of objects behind a real world object inside a real world reflection
works correctly (the white ball behind the salt shaker is behind it even in the reflection).

Finally, all objects pick up indirect illumination based on the background plate itself. Only
one rectangular area light source exists in the rendering.

7.5.5 Reflections and Alpha

When preparing for external compositing and using transparent black for background and
opaque black for shadows it is important that reflections also get an alpha channel.

The alpha component of the refl color parameter defines how much the reflection is present
in the alpha channel.

Likewise the alpha component of the indirect parameter defines how much indirect light is
seen in the alpha channel.

Neither of those have any function if the alpha of the background is 1.0, i.e. when using a
background photo.

52 7 Matte/Shadow Objects and Camera Maps

7.5.6 Best-of-Both-Worlds Mode

If one need the synthetic objects to reflect the real objects but still want the flexibility of
external compositing for shadows (i.e. one does not want to add in the background already
when rendering) one can create a hybrid approach.

This is accomplished with the help of the mip rayswitch shader. Use the shader to switch
between using a transparent black (0 0 0 0) background for eye rays and using the camera
mapped photo for other rays (e.g. reflection, refraction and final gathering).

7.5.7 Conclusion and Workflow Tips

Here is a simple step-by-step workflow to render synthetic objects into a background plate. It
assumes one has

Prerequisite stuff

• A background plate

• A mirror ball photo taken from the same camera angle 4

Then perform as follows:

• Put mip rayswitch environment in the mental ray camera environment.

• In its background slot, use a mip cameramap with the background plate in its map
slot.

• In its environment slot, use mip mirrorball with the mirror ball photo in its map
slot.

4One can often get away with a low dynamic range mirror ball photo if one keeps it slightly underexposed.

7.5 Usage Tips 53

• Create a ground plane, and use mip matteshadow as the surface, shadow and photon
shader on that ground plane.

• Use the same instance of mip cameramap in its background parameter.

• Add lights to mimic the “real world” lighting, or use final gathering based on the
environment, or a combination thereof to achieve the proper shading.

• Tune any ambient occlusion by setting the ambient parameter of mip matteshadow
and adjusting the ao distance.

• If the “ground” should catch general indirect lighting, enable catch indirect and
connect the map in background to indirect as well.

The shade tree

54 7 Matte/Shadow Objects and Camera Maps

Add any CG objects with physically plausible shaders (such as the mia material from the
Architectural library). Render. Smile.

Render. Smile.

