纖維配向預測理論參考

纖維配向預測中使用的模型有三個主分組:微觀力學模型、熱膨脹係數模型與纖維閉合逼近模型。也會考慮其他一般研究。

微觀力學模型

微觀力學模型是一組模型,用於在瞭解母體與纖維彈性性質、纖維含量以及纖維縱橫比的情況下,預測短纖維強化複合物的彈性性質。

模型 參考
Halpin-Tsai J.C. Halpin and J.L. Kardos, The Halpin-Tsai Equations: A review, Polym. Eng. Sci., 16(5), 345-352 (1976).
Tandon-Weng G.P. Tandon and G.J. Weng, The Effect of Aspect Ratio of Inclusions on the Elastic properties of Unidirectionally Aligned Composites, Polym. Compos., 5(4), 327-333 (1984).
Krenchel H. Krenchel, Fiber Reinforcement. Stockholm, Akademisk Vorlag, 1964.
Cox H.L. Cox, The Elasticity and Strength of Paper and Other Fibrous Materials, British J. Appl. Phys., 3, 72-79 (1952).
Mori-Tanaka Tucker, C. L. and Liang, E., Stiffness predictions for unidirectional short fiber composites: review and evaluation. Compos. Sci. Technol., 59, 655-71 (1999)
Ogorkiewicz-Weidmann-Counto

R.M. Ogorkiewicz and G.W. Weidmann, Tensile Stiffness of a Thermoplastic Reinforced with Glass Fibers or Spheres, J. Mech. Sci., 16, 10 (1974).

V.J. Counto, The Effect of the Elastic Modulus of the Aggregate on the Elastic Modulus Creep and Creep Recovery of Concrete, Mag. Concrete Res., 16, 129 (1964).

熱膨脹係數模型

熱膨脹係數模型是一組模型,用於在瞭解母體與纖維熱膨脹係數、纖維含量以及纖維縱橫比的情況下,預測單向纖維強化複合物之熱膨脹的縱向與橫向係數。

模型 參考
Schapery R.A. Schapery, Thermal Expansion Coefficients of Composite materials Based on Energy Principles, J. Compos. Mater., 2 (3), 380-404 (1968).
Chamberlain D.E. Bowles and S.S. Tompkins, Prediction of Coefficients of Thermal Expansion for Unidirectional Composites, J. Comps. Mater., 23, 370-388 (1989).
Rosen-Hashin B.W. Rosen and Z. Hashin, Effective Thermal Expansion Coefficients and Specific Heat of Composite Materials, Int. J. Eng. Sci., 8, 157-173 (1970).

纖維閉合逼近模型

閉合逼近是一個根據二級張量大致估計四級配向張量的公式。已經提出各種不同形式的閉合逼近。

模型 參考
Hybrid S.G. Advani and C.L. Tucker, The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites, J. Rheol., 31, 751-784 (1987).
Orthotropic 1 Moldflow Bi-linear model based on J.S. Cintra and C.L. Tucker, Orthotropic Closure Approximations for Flow-induced Fiber Orientation, J. Rheol., 39, 1095-1122 (1995).
Orthotropic 2 ORF (orthotropic fitted), see J.S. Cintra and C.L. Tucker, Orthotropic Closure Approximations for Flow-induced Fiber Orientation, J. Rheol., 39, 1095-1122 (1995).
Orthotropic 3 Moldflow Bi-quadratic model based on J.S. Cintra and C.L. Tucker, Orthotropic Closure Approximations for Flow-induced Fiber Orientation, J. Rheol., 39, 1095-1122 (1995).
Orthotropic 4 ORL (orthotropic, fitted for low Ci), see J.S. Cintra and C.L. Tucker, Orthotropic Closure Approximations for Flow-induced Fiber Orientation, J. Rheol., 39, 1095-1122 (1995).

一般

Jeffery, G.B., The Motion of Ellipsoidal Particles Immersed in Viscous Fluid, Proc. Roy. Soc., A102, p.161 (1922).

J.C. Halpin and J.L. Kardos, The Halpin-Tsai Equations: A review, Polym. Eng. Sci., 16(5), 345-352 (1976).

Folgar, F.P. and C.L. Tucker, Orientation Behavior of Fibers in Concentrated Suspensions, J. Reinf. Plas. Compos., 3, p.98 (1984).

Dinh, S.M. and Armstrong, R.C., A Rheological Equation of State for Semi-Concentrated Fiber Suspensions. J. Rheol., 28, p207 (1984).

Tandon, G.P. and Weng, G.T., Polym. Comp., 327-333 (1984).

Bay, R.S., Fiber Orientation in Injection Molded Composites: A Comparison of Theory and Experiment. PhD thesis, University of Illinois at Urbana-Champaign (1991).

Tucker, C.L. and Liang, E., Stiffness predictions for unidirectional short fiber composites: review and evaluation. Compos. Sci. Technol., 59, 655-71 (1999).

J. Wang, J.F. O’Gara, and C.L. Tucker III, An Objective Model for Slow Orientation Dynamics in Concentrated Fiber Suspensions: Theory and Rheological Evidence. Journal of Rheology, 52(5):1179-1200 (2008).

Phelps, J. and C. L. Tucker III, An Anisotropic Rotary Diffusion Model for Fiber Orientation in Short- and Long-Fiber Thermoplastics. Journal of Non-Newtonian Fluid Mechanics 156(3): 165–176 (2009).

Phelps, J.H., Processing-microstructure Models for Short- and Long-fiber Thermoplastic Composites. PhD thesis, University of Illinois at Urbana-Champaign (2009).