External flows are characterized by a solid body immersed in fluid that is moving relative to the body. Nearly all engineering aerodynamic problems are external flows. Examples include noise generated by a car mirror at highway speeds, the drag on a motorcycle fairing, and the lift on a missile. Additionally, wind tunnel models are usually considered external flows.
These problems generally require the greatest number of nodes of any CFD calculation since the velocity and pressure boundary conditions applied at the exterior of the flow domain must not affect flow features around the immersed body.
Generally, the exterior or “far-field” boundary must be at least 5 to 10 chords upstream and 10 to 20 chords downstream of the body. Higher Reynolds number flows will require far-field distances in the upper portion of this range.
It is important to transition the element sizes in the mesh quite substantially to conserve nodes. It is common for elements on the body surface to be several thousand times smaller than elements at the far-field. Lift and drag forces calculated by Autodesk Simulation CFD will be dependent upon the mesh size near the body.
Transitioning must be smooth for solution stability and accuracy, and care must be taken to avoid creating tetrahedral elements with very high aspect ratios. Sometimes embedding fluid volumes using mesh refinement regions around the object of interest is very useful for concentrating many elements around it. This approach helps transition the mesh from very small elements around the object to larger elements further away from the object.
For incompressible and subsonic compressible flow problems with subsonic inlets, velocity and pressure boundary conditions are applied on the far-field boundary as shown in the following figure. To aid convergence, it is useful to specify the velocity boundary condition around a greater portion of the flow domain than for pressure, as shown in the following figure:
Apply slip conditions to any surfaces that are not openings unless the boundary layer or ground effects are of interest against the wall.
If the object has an angle of attack relative to the flow, it is better to re-orient the calculation domain instead of the object. The domain orientation should be that the free-stream velocity and the domain sides are parallel:
Note that convergence will often be slow, and the monitor will show relatively flat lines well before the flow field is fully developed around the body. Subtle differences in the pressure distribution may not be visible by only reviewing the convergence monitor.
To adjust the Automatic Convergence Assessment to Tight, on the Control tab of the Solve dialog, click Solution Control. Click the Advanced button in the Intelligent Solution Control group. Move the slider to Tight.
We recommend these techniques to improve accuracy of the drag calculation:
To simulate the effect of altitude, we recommend that you consult tables of atmospheric data to identify the static pressure and temperature based on a geometric and/or geopotential altitude. From the pressure and temperature, the density of the air can be computed and specified as a constant property.
If properties are held constant (hence you are not solving for compressible or thermal effects) the density is the only parameter that needs to be modified on the Material Editor. Keep in mind that the actual effect that is simulated at different altitudes is that of the Reynolds number.
Related Topics