#include "SampleUtil.h"
#include <algorithm>
#include <ImathMatrix.h>
#include <ImathMatrixAlgo.h>
#include <ImathQuat.h>
#include <ImathEuler.h>
void GetRelevantSampleTimes( ProcArgs &args, TimeSamplingPtr timeSampling,
                            size_t numSamples, SampleTimeSet &output,
                            MatrixSampleMap * inheritedSamples)
{
    if ( numSamples < 2 )
    {
        output.insert( 0.0 );
        return;
    }
    chrono_t frameTime = args.frame / args.fps;
    chrono_t shutterOpenTime = ( args.frame + args.shutterOpen ) / args.fps;
    chrono_t shutterCloseTime = ( args.frame + args.shutterClose ) / args.fps;
    
    
    if (inheritedSamples && inheritedSamples->size() > 1)
    {
        shutterOpenTime = std::min(shutterOpenTime,
                inheritedSamples->begin()->first);
        shutterCloseTime = std::max(shutterCloseTime,
                inheritedSamples->rbegin()->first);
    }
    std::pair<index_t, chrono_t> shutterOpenFloor =
        timeSampling->getFloorIndex( shutterOpenTime, numSamples );
    std::pair<index_t, chrono_t> shutterCloseCeil =
        timeSampling->getCeilIndex( shutterCloseTime, numSamples );
    
    static const chrono_t epsilon = 1.0 / 10000.0;
    
    
    
    if ( shutterOpenFloor.first < shutterCloseCeil.first )
    {
        
        
        if ( shutterOpenFloor.second < shutterOpenTime )
        {
            chrono_t nextSampleTime =
                     timeSampling->getSampleTime( shutterOpenFloor.first + 1 );
            if ( fabs( nextSampleTime - shutterOpenTime ) < epsilon )
            {
                shutterOpenFloor.first += 1;
                shutterOpenFloor.second = nextSampleTime;
            }
        }
    }
    for ( index_t i = shutterOpenFloor.first; i < shutterCloseCeil.first; ++i )
    {
        output.insert( timeSampling->getSampleTime( i ) );
    }
    
    if ( output.size() == 0 )
    {
        output.insert( frameTime );
        return;
    }
    chrono_t lastSample = *(output.rbegin() );
    
    if ( ( fabs( lastSample - shutterCloseTime ) > epsilon )
         && lastSample < shutterCloseTime )
    {
        output.insert( shutterCloseCeil.second );
    }
}
namespace
{
    void DecomposeXForm(
            const Imath::M44d &mat,
            Imath::V3d &scale,
            Imath::V3d &shear,
            Imath::Quatd &rotation,
            Imath::V3d &translation
    )
    {
        Imath::M44d mat_remainder(mat);
        
        Imath::extractAndRemoveScalingAndShear(mat_remainder, scale, shear);
        
        translation.x = mat_remainder[3][0];
        translation.y = mat_remainder[3][1];
        translation.z = mat_remainder[3][2];
        
        rotation = extractQuat(mat_remainder);
    }
    M44d RecomposeXForm(
            const Imath::V3d &scale,
            const Imath::V3d &shear,
            const Imath::Quatd &rotation,
            const Imath::V3d &translation
    )
    {
        Imath::M44d scale_mtx, shear_mtx, rotation_mtx, translation_mtx;
        scale_mtx.setScale(scale);
        shear_mtx.setShear(shear);
        rotation_mtx = rotation.toMatrix44();
        translation_mtx.setTranslation(translation);
        return scale_mtx * shear_mtx * rotation_mtx * translation_mtx;
    }
    
    inline double lerp(double a, double b, double amt)
    {
        return (a + (b-a)*amt);
    }
    Imath::V3d lerp(const Imath::V3d &a, const Imath::V3d &b, double amt)
    {
        return Imath::V3d(lerp(a[0], b[0], amt),
                          lerp(a[1], b[1], amt),
                          lerp(a[2], b[2], amt));
    }
    M44d GetNaturalOrInterpolatedSampleForTime(const MatrixSampleMap & samples,
            Abc::chrono_t sampleTime)
    {
        MatrixSampleMap::const_iterator I = samples.find(sampleTime);
        if (I != samples.end())
        {
            return (*I).second;
        }
        if (samples.empty())
        {
            return M44d();
        }
        if (samples.size() == 1)
        {
            return samples.begin()->second;
        }
        if (sampleTime <= samples.begin()->first)
        {
            return samples.begin()->second;
        }
        if (sampleTime >= samples.rbegin()->first)
        {
            return samples.rbegin()->second;
        }
        
        Abc::chrono_t lTime = samples.begin()->first;
        Abc::chrono_t rTime = samples.rbegin()->first;
        for (MatrixSampleMap::const_iterator I = samples.begin();
                I != samples.end(); ++I)
        {
            Abc::chrono_t testSampleTime= (*I).first;
            if (testSampleTime > lTime && testSampleTime <= sampleTime)
            {
                lTime = testSampleTime;
            }
            if (testSampleTime > rTime && testSampleTime >= sampleTime)
            {
                rTime = testSampleTime;
            }
        }
        M44d mtx_l;
        M44d mtx_r;
        {
            MatrixSampleMap::const_iterator I;
            I = samples.find(lTime);
            if (I != samples.end())
            {
                mtx_l = (*I).second;
            }
            I = samples.find(rTime);
            if (I != samples.end())
            {
                mtx_r = (*I).second;
            }
        }
        Imath::V3d s_l,s_r,h_l,h_r,t_l,t_r;
        Imath::Quatd quat_l,quat_r;
        DecomposeXForm(mtx_l, s_l, h_l, quat_l, t_l);
        DecomposeXForm(mtx_r, s_r, h_r, quat_r, t_r);
        Abc::chrono_t amt = (sampleTime-lTime) / (rTime-lTime);
        if ((quat_l ^ quat_r) < 0)
        {
            quat_r = -quat_r;
        }
        return RecomposeXForm(lerp(s_l, s_r, amt),
                                 lerp(h_l, h_r, amt),
                                 Imath::slerp(quat_l, quat_r, amt),
                                 lerp(t_l, t_r, amt));
    }
}
void ConcatenateXformSamples( ProcArgs &args,
        const MatrixSampleMap & parentSamples,
        const MatrixSampleMap & localSamples,
        MatrixSampleMap & outputSamples)
{
    SampleTimeSet unionOfSampleTimes;
    for (MatrixSampleMap::const_iterator I = parentSamples.begin();
            I != parentSamples.end(); ++I)
    {
        unionOfSampleTimes.insert((*I).first);
    }
    for (MatrixSampleMap::const_iterator I = localSamples.begin();
            I != localSamples.end(); ++I)
    {
        unionOfSampleTimes.insert((*I).first);
    }
    for (SampleTimeSet::iterator I = unionOfSampleTimes.begin();
            I != unionOfSampleTimes.end(); ++I)
    {
        M44d parentMtx = GetNaturalOrInterpolatedSampleForTime(parentSamples,
                (*I));
        M44d localMtx = GetNaturalOrInterpolatedSampleForTime(localSamples,
                (*I));
        outputSamples[(*I)] = localMtx * parentMtx;
    }
}
Abc::chrono_t GetRelativeSampleTime( ProcArgs &args, Abc::chrono_t sampleTime)
{
    const chrono_t epsilon = 1.0 / 10000.0;
    chrono_t frameTime = args.frame / args.fps;
    Abc::chrono_t result = ( sampleTime - frameTime ) * args.fps;
    if ( fabs( result ) < epsilon )
    {
        result = 0.0;
    }
    return result;
}