pymel.core.effects.rigidSolver¶
- rigidSolver(*args, **kwargs)¶
This command sets the attributes for the rigid solver In query mode, return type is based on queried flag.
Flags:
Long Name / Short Name Argument Types Properties autoTolerances / at bool Turns the auto tolerance calculation on and off. The auto tolerances calculation will override the default or user defined values of the step size and collision tolerance value that is calculated based on the objects in the scene. Default: 0 (off) bounciness / b bool Turns bounciness on and off for the an the objects in the simulation. Default value: on cacheData / cd bool Turns the cache on fall all rigid bodies in the system. Default value: off collide / c bool Disallows the interpenetration of the two rigid bodies listed. Default: Collide is on for all bodies. collisionTolerance / ct float Sets the collision tolerance. This is the error at which two objects are considered to have collided. Range: 0.0005 - 1.000 Default: 0.02 contactData / ctd bool Turns the contact data information on/off for all rigid bodies. Default value: off create / cr bool Creates a new rigid solver. current / cu bool Sets rigid solver as the current solver. deleteCache / deleteCache bool Deletes the cache for all rigid bodies in the system. displayCenterOfMass / dcm bool Displays the center of mass icon. Default value: on displayConstraint / dc bool Displays the constraint vectors. Default value: on displayVelocity / dv bool Displays the velocity vectors. Default value: off dynamics / d bool Turns dynamics on and off for the an the objects in the simulation. Default value: on friction / f bool Turns friction on and off for the an the objects in the simulation. Default value: on interpenetrate / i bool Allows the two rigid bodies listed to interpenetrate. Default: interpenetration is off for all bodies. interpenetrationCheck / ic bool Checks for interpenetrating rigid bodies in the scene. name / n unicode rigidBodies / rb bool Returns a list of rigid bodies in the solver. rigidBodyCount / rbc bool Returns the number of rigid bodies in the solver. showCollision / sc bool Displays the colliding objects in a different color. showInterpenetration / si bool Displays the interpenetrating objects in a different color. solverMethod / sm int Sets the solver method. The choices are 0 | 1 | 2. 0 = Euler (fastest/least acurate), 1 = Runge-Kutta ( slower/more acurate), 2 = adaptive Runge-Kutta (slowest/most acurate). The default is 2 (adaptive Runge-Kutta) startTime / stt float Sets the start time for the solver. state / st bool Turns the rigid solver on or off. statistics / sta bool Turns the statistic information on/off for all rigid bodies. Default value: off stepSize / s float Sets the solvers step size. This is the maximum size of a single step the solver will take at one time. Range: 0.0004 - 0.100 Default: 0.0333 velocityVectorScale / vs float scales the velocity vector display. Default value: 1.0 Flag can have multiple arguments, passed either as a tuple or a list. Derived from mel command maya.cmds.rigidSolver
Example:
import pymel.core as pm # Set the playback time range to [1, 100] pm.playbackOptions(min=1, max=100) # Result: 1.0 # # Create a poly cube named "floor" pm.polyCube(w=10, h=0.10, d=10, sx=10, sy=1, sz=10, ax=(0, 1, 0), name='floor') # Result: [nt.Transform(u'floor'), nt.PolyCube(u'polyCube1')] # # Create a poly sphere named "ball", then move it to 0 9 0 pm.polySphere(r=1, sx=20, sy=20, ax=(0, 1, 0), name='ball') # Result: [nt.Transform(u'ball'), nt.PolySphere(u'polySphere1')] # pm.move(0, 9.0, 0, r=True) # Create a new rigid body solver pm.rigidSolver(create=True, name='rigidSolver1') # Result: nt.RigidSolver(u'rigidSolver1') # # Set the floor to passive rigid body pm.select('floor') pm.rigidBody(passive=True, solver='rigidSolver1', name='passiveRigidBody') # Result: nt.RigidBody(u'passiveRigidBody') # # Set the ball to active rigid body pm.select('ball') pm.rigidBody(active=True, solver='rigidSolver1', name='activeRigidBody') # Result: nt.RigidBody(u'activeRigidBody') # # Add a gravity field, and connect it to ball pm.gravity(pos=(0, 0, 0), m=9.8, dx=0, dy=-1, dz=0, name='gravityField') # Result: nt.GravityField(u'gravityField') # pm.connectDynamic('activeRigidBody', f='gravityField') # Result: [u'activeRigidBody'] # # Play pm.play(w=True) # Set the rigid solver to allow the ball to interpenetrate the floor, then replay pm.currentTime(1, e=True) # Result: 1.0 # pm.rigidSolver('passiveRigidBody', 'activeRigidBody', 'rigidSolver1', e=True, interpenetrate=True) # Result: nt.RigidSolver(u'rigidSolver1') # pm.play(w=True) # Set the rigid solver to disallow the ball to interpenetrate the floor, replay pm.currentTime(1, e=True) # Result: 1.0 # pm.rigidSolver('passiveRigidBody', 'activeRigidBody', 'rigidSolver1', e=True, collide=True) # Result: nt.RigidSolver(u'rigidSolver1') # pm.play(w=True) # Set the rigid solver to turn off the bounciness, replay pm.currentTime(1, e=True) # Result: 1.0 # pm.rigidSolver('rigidSolver1', e=True, bounciness=False) # Result: nt.RigidSolver(u'rigidSolver1') # pm.play(w=True)