A propos de la finition/du dégagement horizontal



Mode d'accès :

Ruban : onglet FAO groupe de fonctions Fraisage 3D Horizontal

La stratégie Horizontal peut être utilisée pour les opérations d'ébauchage et de finition. Elle détecte automatiquement toutes les zones planes de la pièce et les dégage par un chemin de décalage, de la même manière que la stratégie Ebauche poches.

Lorsque la zone plane est étagée au-dessus des zones environnantes, l'outil se déplace au-dessus d'elle pour usiner les arêtes.

Il existe une option pour couper jusqu'à la face horizontale en plusieurs étapes, ce qui signifie que cette stratégie est une combinaison des stratégies d'ébauchage et de finition.

Paramètres de l'onglet Outil



Lubrifiant

Type de lubrifiant employé avec l'outil.

Vitesse de broche

Vitesse de rotation de la broche.

Vitesse de surface

Vitesse de la broche exprimée en tant que vitesse de l'outil sur la surface.

Vitesse de broche de rampe

Vitesse de rotation de la broche lors des mouvements de la rampe.

Avance

Avance utilisée dans les mouvements de l'outil.

Avance par dent

Avance de coupe exprimée en tant qu'avance par dent.

Vitesse d'entrée

Avance utilisée lors de la progression dans un mouvement de l'outil.

Vitesse de sortie

Avance utilisée lors de la sortie d'un mouvement de l'outil.

Avance rampe

Avance utilisée lors de la réalisation de rampes en hélice dans le brut.

Avance de plongée

Avance utilisée lors de la plongée dans le brut.

Avance par tour

Avance de plongée exprimée en tant qu'avance par tour.

Arbre Porte-outil

Lors de l'utilisation d'un porte-outil, vous pouvez choisir parmi cinq modes d'arbre et porte-outil différents, en fonction de la stratégie d'usinage adoptée. Il est possible de gérer les collisions se rapportant à la fois à l'arbre et au porte-outil, et de définir des hauteurs de sécurité en conséquence.

Utiliser un arbre

Indique que l'arbre de l'outil sélectionné sera utilisé dans le calcul de la trajectoire d'outil afin d'éviter les collisions.

Distance de sécurité arbre

L'arbre de l'outil est toujours maintenu à cette distance de la pièce.

Utiliser un porte-outil

Indique que le porte-outil de l'outil sélectionné sera utilisé dans le calcul de la trajectoire d'outil afin d'éviter les collisions.

Dégagement du porte-outil

Le porte-outil de l'outil est toujours maintenu à cette distance de la pièce.

Paramètres de l'onglet Géométrie



Limite d'usinage

Le mode de limites spécifie la façon dont la limite de la trajectoire d'outil est définie. Les images suivantes illustrent l'utilisation d'une trajectoire d'outil radiale 3D.



Exemple 1



Exemple 2

Modes de limites disponibles :

Zone de limitation de l'outil

Le confinement d'outil permet de contrôler la position de l'outil par rapport aux limites sélectionnées.

Intérieur

La totalité de l'outil reste à l'intérieur de la limite. Par conséquent, il se peut que la surface délimitée par le contour ne soit pas entièrement usinée.



Intérieur

Centrer

La limite est circonscrite au centre de l'outil. Ce paramètre garantit que la totalité de la surface située à l'intérieur de la limite est usinée. Toutefois, les zones situées à l'extérieur des limites peuvent également être usinées.



Centrer

Extérieur

La trajectoire d'outil est créée à l'intérieur de la limite, mais le bord de l'outil peut se déplacer sur l'arête extérieure de la limite.



Extérieur

Pour décaler le confinement de limite, utilisez le paramètre Offset additionnel.

Offset additionnel

L'offset additionnel est un décalage appliqué aux limites sélectionnées et au confinement de l'outil.

Une valeur positive permet de décaler la limite vers l'extérieur, à moins que le confinement d'outil soit défini sur Intérieur, auquel cas une valeur positive entraîne un décalage vers l'intérieur.



Décalage négatif avec le centre de l'outil sur la limite



Absence de décalage avec le centre de l'outil sur la limite



Décalage positif avec le centre de l'outil sur la limite

Afin de vous assurer que le bord de l'outil chevauche la limite, sélectionnez la méthode de confinement de l'outil Extérieur et spécifiez une valeur positive faible.

Afin de vous assurer que le bord de l'outil se trouve complètement en dehors de la limite, sélectionnez la méthode de confinement de l'outil Intérieur et spécifiez une valeur positive faible.

Orientation de l'outil

Spécifie le mode d'orientation de l'outil à l'aide d'une combinaison d'options d'origine et d'orientation du trièdre.

Le menu déroulant Orientation propose les options suivantes pour définir l'orientation des axes X, Y et Z du trièdre :

Le menu déroulant Origine propose les options suivantes pour localiser l'origine du trièdre :

Modèle

Activez cette option pour remplacer la géométrie du modèle (surfaces/corps) définie dans la configuration.

Inclure le modèle de configuration

Cette option est activée par défaut. Le modèle sélectionné dans la configuration est inclus en plus des surfaces du modèle sélectionnées lors de l'opération. Si vous désactivez cette case à cocher, la trajectoire d'outil est uniquement générée sur les surfaces sélectionnées lors de l'opération.

Paramètres de l'onglet Hauteurs



Hauteur de sécurité

La hauteur de sécurité correspond à la première hauteur que l'outil atteint sur son chemin en direction du début de la trajectoire d'outil.



Hauteur de sécurité

Décalage de hauteur de dégagement

Le paramètre Décalage de hauteur de dégagement est appliqué. Il est défini par rapport à la hauteur de dégagement sélectionnée dans la liste déroulante ci-dessus.

Hauteur de rétraction

La hauteur de rétraction spécifie la hauteur qu'atteint l'outil avant la passe de coupe suivante. Elle doit être définie sur une valeur supérieure à celle des paramètres Hauteur d'avance et Haut. La hauteur de rétraction s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.



Hauteur de rétraction

Offset hauteur de rétraction

Le paramètre Décalage hauteur de rétraction est appliqué. Il est défini par rapport à la hauteur de rétraction sélectionnée dans la liste déroulante ci-dessus.

Hauteur supérieure

La hauteur supérieure définit la hauteur qui décrit le haut de la coupe. Elle doit être définie sur une valeur supérieure à celle du paramètre Bas. La hauteur supérieure s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.



Hauteur de la partie supérieure

Décalage dessus de brut

Le paramètre Décalage dessus de brut est appliqué. Il est défini par rapport à la hauteur supérieure sélectionnée dans la liste déroulante ci-dessus.

Hauteur inférieure

La hauteur inférieure détermine les valeurs finales de hauteur et de profondeur d'usinage, ainsi que la profondeur maximale atteinte par l'outil dans le brut. Elle doit être définie sur une valeur inférieure à celle du paramètre Haut. La hauteur inférieure s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.



Profondeur d'usinage

Décalage de profondeur d'usinage

Le paramètre Décalage de profondeur d'usinage est appliqué. Il est défini par rapport à la hauteur inférieure sélectionnée dans la liste déroulante ci-dessus.

Paramètres de l'onglet Passes



Tolérance

La tolérance d'usinage correspond à la somme des tolérances utilisées pour la génération des trajectoires d'outil et la triangulation de la géométrie. Il convient d'ajouter les éventuelles tolérances de filtrage supplémentaires à cette valeur pour obtenir la valeur de tolérance totale.



Tolérance large de 0,100



Tolérance stricte de 0,001

Le mouvement de fraisage par contournage des machines CNC est contrôlé à l'aide des commandes de ligne G1 et d'arc G2 G3. Pour s'adapter à ce comportement, la FAO calcule une approximation des trajectoires d'outil de spline et de surface en linéarisant celles-ci. Elle crée ainsi de nombreux segments de ligne courts destinés à représenter approximativement la forme souhaitée. La précision de l'adéquation entre la trajectoire d'outil et la forme souhaitée dépend largement du nombre de lignes utilisé. En effet, plus le nombre de lignes est important, plus la trajectoire d'outil s'approche de la forme nominale de la spline ou de la surface.

Phénomène du "data starving"

Il peut s'avérer tentant d'avoir systématiquement recours à des valeurs de tolérances très strictes, mais cela s'accompagnera toutefois de certains inconvénients : augmentation de la durée de calcul des trajectoires d'outil, augmentation de la taille des fichiers de code G et mouvements de ligne très courts. Les deux premiers points ne posent guère problème, car Inventor HSM exécute rapidement les calculs, et la plupart des commandes modernes disposent d'au moins 1 Mo de RAM. Cependant, les mouvements de ligne courts, associés à des avances importantes, peuvent entraîner un phénomène connu sous le nom de "data starving".

Ce phénomène se produit lorsque la commande, submergée par la profusion de données à traiter, ne parvient plus à suivre. Les commandes CNC peuvent uniquement traiter un nombre fini de lignes de code (blocs) par seconde. Cela peut représenter à peine 40 blocs/seconde sur les anciennes machines et 1 000 blocs/seconde ou plus sur une machine récente, telle que les modèles de Haas Automation. Il arrive que les mouvements de ligne courts et les avances importantes forcent la vitesse de traitement au-delà des capacités de gestion de la commande. Lorsque cela se produit, la machine doit marquer une pause après chaque mouvement et attendre l'émission de la commande servo suivante.

Valeur de passe manuelle

Activez cette option pour définir manuellement le dépassement.

Passe maximum :

Indique la valeur maximale de dépassement.

Passe minimum

Indique la valeur de passe minimale.

Rayon d'outil minimum



Paramètre Rayon d'outil minimum activé

Lorsque le paramètre Rayon d'outil minimum est activé, les angles vifs de la trajectoire d'outil sont évités, minimisant le broutage sur les pièces finies.



Paramètre Rayon d'outil minimum désactivé

Lorsque le paramètre Rayon d'outil minimum est désactivé, la trajectoire d'outil tente d'enlever de la matière dans tous les endroits que l'outil sélectionné peut atteindre. Cela produit des angles vifs dans la trajectoire d'outil, ce qui engendre fréquemment du broutage dans la pièce usinée.

Remarque : Lorsque ce paramètre est activé, une quantité plus importante de matière reste conservée dans les coins internes. Par conséquent, des opérations de reprise de matière restante doivent être effectuées ultérieurement au moyen d'un outil plus petit.

Utiliser un usinage à spirale variable

Activez cette option pour créer une trajectoire d'outil à déplacements en spirale pour la poche. Ceci permet une exécution sans à-coups sur la machine.



Trajectoire d'outil Poche 2D standard



Trajectoire d'outil Poche 2D à spirale variable

Direction

L'option Direction vous permet de configurer Inventor HSM pour qu'il tente de conserver un fraisage de type Avalant ou Opposition.

A faire : Selon la géométrie utilisée, il n'est pas toujours possible de conserver un fraisage en avalant ou en opposition tout au long de la trajectoire d'outil.

Avalant

Sélectionnez Avalant pour usiner toutes les passes dans une seule direction. Lorsque cette méthode est appliquée, Inventor HSM tente d'utiliser un fraisage en avalant par rapport aux limites sélectionnées.



Avalant

Opposition

Ce paramètre permet d'inverser la direction de la trajectoire d'outil par rapport au paramètre Avalant afin de générer une trajectoire d'outil de fraisage en opposition.



Opposition

Autoriser hauteur de crête

Lors de la programmation de faces planes avec un outil ayant un rayon dans le coin, un point de rebroussement (ou crête) peut être généré entre les dépassements.

Par défaut, la valeur Passe maximum est remplacée afin de s'assurer qu'aucun point de rebroussement entre dépassements n'est produit.



Autoriser hauteur de crête désactivé



Autoriser hauteur de crête activé

Ci-dessus : poche usinée avec une fraise en arrondi de 3/8" à un dépassement maximum de 0,25".

Tolérance de lissage :

Quantité maximale de lissage appliquée aux passes d'ébauchage. Utilisez ce paramètre pour éviter les angles aigus dans la trajectoire d'outil.



Passes d'offset en Z

Activez cette option pour effectuer plusieurs ouvertures de profondeur.

Les passes d'offset en Z permettent de créer plusieurs passes de décalage en Z incrémentielles dans de nombreuses stratégies de finition 3D. Elles fonctionnent comme plusieurs pas en Z de finition dans les opérations 2D et sont utiles pour l'enlèvement d'une quantité fixe de brut à l'aide de plusieurs passes. Les images suivantes sont présentées avec l'option Parallèle 3D.



Désactivé



Passes d'offset 3 axes

Passe maximum en Z

Indique la valeur de passe maximale entre les niveaux Z.

Nombre de passes en Z

Indique le nombre de passes en Z voulu.

Tri par profondeurs

Indique que les passes doivent être triées de haut en bas.



Désactivé



Activé

Surépaisseur



Positive

Surépaisseur positive : quantité de brut restant après une opération. Cette quantité doit ensuite être supprimée à l'aide d'opérations d'ébauche et de finition. Dans le cas d'opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière.



Aucune

Aucune surépaisseur : enlève l'excédent de matière jusqu'à la géométrie sélectionnée.



Négative

Surépaisseur négative : enlève la matière au-delà de la surface de la pièce ou de la limite. Cette technique est souvent employée dans l'électro-érosion pour tolérer un éclateur ou pour répondre aux exigences de tolérance d'une pièce.

Surépaisseur radiale

Le paramètre Surépaisseur radiale détermine la quantité de matière à conserver dans la direction radiale (perpendiculaire à l'axe de l'outil), c'est-à-dire sur le côté de l'outil.



Surépaisseur radiale



Surépaisseur radiale et surépaisseur en Z

La définition d'une valeur positive pour le paramètre de surépaisseur radiale permet de conserver de la matière sur les parois verticales et les zones pentues de la pièce.

Dans le cas des surfaces qui ne sont pas parfaitement verticales, Inventor HSM procède à une interpolation entre les valeurs de surépaisseur en Z (au sol) et de surépaisseur radiale. De ce fait, il se peut que le brut restant dans la direction radiale sur ces surfaces soit différent de la valeur spécifiée, selon la pente de la surface et la valeur de surépaisseur en Z définie.

La modification de la valeur de surépaisseur radiale définit automatiquement la valeur de surépaisseur en Z sur la même quantité, à moins de spécifier manuellement cette dernière.

Dans le cadre des opérations de finition, la valeur par défaut est égale à 0 mm/0 po ; autrement dit, aucune quantité de matière n'est conservée.

Pour les opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière qui peut ensuite être enlevée ultérieurement au moyen d'une ou de plusieurs opérations de finition.

Surépaisseur négative

Lorsque vous utilisez une surépaisseur négative, l'opération d'usinage enlève plus de matière du brut que la forme de votre modèle ne le précise. Ce paramètre peut s'employer pour usiner des électrodes dotées d'un éclateur dont la taille est égale à la surépaisseur négative.

Les valeurs des paramètres de surépaisseur radiale et de surépaisseur en Z peuvent toutes deux être négatives. Cependant, la valeur de surépaisseur radiale négative doit être inférieure au rayon de l'outil.

Lorsque vous utilisez une fraise boule ou hémisphérique dont la valeur de surépaisseur radiale négative est supérieure au rayon de coin, la surépaisseur en Z négative doit être inférieure ou égale à la valeur de ce rayon de coin.

Surépaisseur en Z (sol)

Le paramètre Surépaisseur en Z détermine la quantité de matière à conserver dans la direction axiale (le long de l'axe Z), c'est-à-dire à l'extrémité de l'outil.



Surépaisseur en Z



Surépaisseur radiale et surépaisseur en Z

La définition d'une valeur positive pour le paramètre de surépaisseur en Z permet de conserver de la matière sur les zones peu profondes de la pièce.

Dans le cas des surfaces qui ne sont pas parfaitement horizontales, Inventor HSM procède à une interpolation entre les valeurs de surépaisseur en Z et de surépaisseur radiale (paroi). De ce fait, il se peut que le brut restant dans la direction axiale sur ces surfaces soit différent de la valeur spécifiée, selon la pente de la surface et la valeur de surépaisseur radiale définie.

La modification de la valeur de surépaisseur radiale définit automatiquement la valeur de surépaisseur en Z sur la même quantité, à moins de spécifier manuellement cette dernière.

Dans le cadre des opérations de finition, la valeur par défaut est égale à 0 mm/0 po ; autrement dit, aucune quantité de matière n'est conservée.

Pour les opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière qui peut ensuite être enlevée ultérieurement au moyen d'une ou de plusieurs opérations de finition.

Surépaisseur négative

Lorsque vous utilisez une surépaisseur négative, l'opération d'usinage enlève plus de matière du brut que la forme de votre modèle ne le précise. Ce paramètre peut s'employer pour usiner des électrodes dotées d'un éclateur dont la taille est égale à la surépaisseur négative.

Les valeurs des paramètres de surépaisseur radiale et de surépaisseur en Z peuvent toutes deux être négatives. Cependant, lorsque vous utilisez une fraise boule ou hémisphérique dont la valeur de surépaisseur radiale négative est supérieure au rayon de coin, la surépaisseur en Z négative doit être inférieure ou égale à la valeur de ce rayon de coin.

Congés

Activez cette option pour spécifier un rayon de congé.

Rayon de congé

Spécifiez un rayon de congé.

Lissage

Lisse la trajectoire d'outil en supprimant des points et des arcs d'ajustement en trop dans la mesure du possible et dans la plage de tolérance de filtrage donnée.



Lissage désactivé



Lissage activé

Le lissage permet de réduire la taille du code sans sacrifier la précision. Le principe du lissage est le suivant : les lignes colinéaires sont remplacées par une seule ligne et les lignes multiples des zones incurvées par des arcs tangents.

Les effets du lissage peuvent être considérables. La taille du fichier de code G peut être réduite de moitié, voire plus. La machine fonctionnera plus rapidement et de manière plus fluide, et la finition de surface aura un meilleur aspect. La proportion de réduction du code dépend de la façon dont la trajectoire d'outil se prête au lissage. Le filtrage fonctionne bien pour les trajectoires d'outil situées essentiellement sur un plan principal (XY, XZ ou YZ), telles que les trajectoires parallèles. En revanche, les autres types, comme les crêtes en 3D, sont moins réduits.

Tolérance de lissage

Indique la tolérance du filtre de lissage.

Le lissage donne des résultats optimaux lorsque la tolérance (c'est-à-dire la précision avec laquelle la trajectoire linéarisée initiale est générée) est supérieure ou égale à la tolérance de lissage (ajustement de l'arc de ligne).

Remarque : La tolérance totale, c'est-à-dire la distance par rapport à laquelle la trajectoire d'outil peut dévier de la forme de spline ou de surface idéale, correspond à la somme de la tolérance d'ouverture et de la tolérance de lissage. Par exemple, si vous définissez une tolérance d'ouverture de 0,0004 po et une tolérance de lissage de 0,0004 po, cela signifie que la trajectoire d'outil peut s'écarter de la forme de spline ou de surface d'origine d'une valeur maximale de 0.0008 po par rapport à la trajectoire idéale.

Optimisation Avance

Indique que l'avance doit être réduite au niveau des coins.

Changement de direction maximum

Précise le changement angulaire maximal autorisé avant la réduction de l'avance.

Rayon d'avance réduite

Indique le rayon minimal autorisé avant la réduction de l'avance.

Distance d'avance réduite

Spécifie la distance de réduction de l'avance avant un coin.

Avance réduite

Indique l'avance réduite à appliquer dans les coins.

Seulement des coins intérieurs

Activez cette option pour réduire uniquement l'avance sur les coins intérieurs.

Paramètres de l'onglet Liaison entre passes



Type de rétraction

Détermine la façon dont l'outil se déplace entre les passes de coupe. Dans les images suivantes, la stratégie 5 axes isoparamétrique est appliquée.

Dans le cas des machines CNC qui ne prennent pas en charge les mouvements rapides linéarisés, il est possible de modifier le post-processeur afin de convertir tous les mouvements G0 en mouvements G1 UGV. Pour obtenir de plus amples informations et des instructions sur la modification des post-processeurs évoquée, contactez l'assistance technique.

Mode UGV

Indique les situations dans lesquelles les mouvements rapides doivent être convertis en mouvements réellement rapides (G0) et quand ils doivent être convertis en mouvements UGV (G1).

Ce paramètre est généralement défini pour éviter les collisions lors des mouvements rapides sur les machines qui effectuent des mouvements de type "déviation" en ces endroits.

Haute vitesse

Avance à utiliser pour les mouvements rapides traduits en mouvements G1 plutôt que G0.

Autoriser la rétraction rapide

Lorsque ce paramètre est activé, les rétractions s'effectuent sous forme de mouvements rapides (G0). Désactivez ce paramètre pour forcer les rétractions à la vitesse de sortie.

Distance de sécurité

Distance minimale entre l'outil et les surfaces de la pièce lors des mouvements de rétraction. Cette distance est mesurée après l'application de la surépaisseur, de sorte que si une surépaisseur négative est utilisée, il convient de faire particulièrement attention à ce que la distance de sécurité soit suffisamment grande pour éviter les collisions.

Distance maximum outil baissé

Indique la distance maximale autorisée pour les mouvements avec l'outil baissé.



Distance maximum outil baissé de 1"



Distance maximum outil baissé de 2"

Hauteur :

Indique la distance de levage lors des mouvements de repositionnement.



Hauteur de 0



Hauteur de 0,1 po

Rayon d'entrée horizontal

Spécifie le rayon à appliquer aux mouvements d'entrée horizontaux.



Rayon d'entrée horizontal

Rayon d'entrée vertical

Rayon de l'arc vertical destiné à lisser le mouvement d'entrée en direction de la trajectoire d'outil elle-même.



Rayon d'entrée vertical

Rayon de sortie horizontal

Spécifie le rayon à appliquer aux mouvements de sortie horizontaux.



Rayon de sortie horizontal

Rayon de sortie vertical

Spécifie le rayon à appliquer à la sortie verticale.



Rayon de sortie vertical

Type de rampe

Indique la manière dont l'outil se déplace vers le bas pour effectuer chaque ouverture de profondeur.



Pré-perçage

Remarque : Pour pouvoir utiliser l'option Pré-perçage, vous devez définir au préalable un ou plusieurs emplacements à cet effet.


Tréflage



Zig-zag

Observez les transitions lisses du type de rampe en zig-zag.



Profil



Profil de lisse



Hélice

Autoriser plongée en dehors du brut

Au lieu d'usiner la matière à l'intérieur du contour d'une zone sélectionnée, l'activation de ce paramètre permet de supprimer de la matière à l'extérieur du contour sélectionné, par la sélection d'un contour de brut supplémentaire.

Désactivez ce paramètre pour forcer l'accélération dans le brut.

Angle de rampe (deg)

Indique l'angle de rampe maximal.

Incrément Z rampe maximum

Indique l'incrément Z de rampe maximal par tour sur le profil de rampe. Ce paramètre permet de limiter la charge de l'outil lors des ouvertures pleine largeur pendant l'utilisation de la rampe.

Hauteur de sécurité rampe

Hauteur de la rampe au-dessus du niveau de brut actuel.

Distance radiale rampe :

Indique la distance minimale jusqu'au contour pour l'hélice de pénétration.

Diamètre de rampe hélicoïdale

Spécifie le diamètre de la rampe hélicoïdale.

Diamètre de rampe minimum :

Spécifie le diamètre minimal de la rampe.

Positions de pré-perçage

Bouton de sélection des positions de pré-perçage.

Positions d'entrée

Bouton de sélection permettant de choisir des positions d'entrée.