A propos du traçage

Mode d'accès :

Ruban : onglet FAO groupe de fonctions Fraisage 2D Trace

Une opération Trace vous permet d'usiner le long des contours avec différentes valeurs Z et avec, ou sans, correction vers la gauche et vers la droite. Lors de l'utilisation de la correction vers la gauche et vers la droite, il est possible que vous rencontriez des passes déconnectées dans les coins en raison de brusques changements au niveau Z.

Paramètres de l'onglet Outil



Lubrifiant

Type de lubrifiant employé avec l'outil.

Vitesse de broche

Vitesse de rotation de la broche.

Vitesse de surface

Vitesse de la broche exprimée en tant que vitesse de l'outil sur la surface.

Vitesse de broche de rampe

Vitesse de rotation de la broche lors des mouvements de la rampe.

Avance

Avance utilisée dans les mouvements de l'outil.

Avance par dent

Avance de coupe exprimée en tant qu'avance par dent.

Vitesse d'entrée

Avance utilisée lors de la progression dans un mouvement de l'outil.

Vitesse de sortie

Avance utilisée lors de la sortie d'un mouvement de l'outil.

Avance rampe

Avance utilisée lors de la réalisation de rampes en hélice dans le brut.

Avance de plongée

Avance utilisée lors de la plongée dans le brut.

Avance par tour

Avance de plongée exprimée en tant qu'avance par tour.

Paramètres de l'onglet Géométrie



Orientation de l'outil

Spécifie le mode d'orientation de l'outil à l'aide d'une combinaison d'options d'origine et d'orientation du trièdre.

Le menu déroulant Orientation propose les options suivantes pour définir l'orientation des axes X, Y et Z du trièdre :

Le menu déroulant Origine propose les options suivantes pour localiser l'origine du trièdre :

Paramètres de l'onglet Hauteurs



Hauteur de sécurité

La hauteur de sécurité correspond à la première hauteur que l'outil atteint sur son chemin en direction du début de la trajectoire d'outil.



Hauteur de sécurité

Décalage de hauteur de dégagement

Le paramètre Décalage de hauteur de dégagement est appliqué. Il est défini par rapport à la hauteur de dégagement sélectionnée dans la liste déroulante ci-dessus.

Hauteur de rétraction

La hauteur de rétraction spécifie la hauteur qu'atteint l'outil avant la passe de coupe suivante. Elle doit être définie sur une valeur supérieure à celle des paramètres Hauteur d'avance et Haut. La hauteur de rétraction s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.



Hauteur de rétraction

Offset hauteur de rétraction

Le paramètre Décalage hauteur de rétraction est appliqué. Il est défini par rapport à la hauteur de rétraction sélectionnée dans la liste déroulante ci-dessus.

Hauteur d'avance

La hauteur d'avance définit la hauteur jusqu'à laquelle l'outil accélère avant de passer à la vitesse d'avance/de plongée pour pénétrer la pièce. Elle doit être supérieure à la valeur du paramètre Haut. Une opération de perçage utilise cette hauteur comme hauteur de travail initiale et hauteur de rétraction entre les picotins. La hauteur d'avance s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.



Hauteur de Travail

Offset hauteur de Travail :

Le décalage de la hauteur d'avance est appliqué et dépend de la hauteur d'avance sélectionnée dans la liste déroulante ci-dessus.

Paramètres de l'onglet Passes



Tolérance

Tolérance utilisée lors de la linéarisation d'une géométrie telle que des splines et des ellipses. La tolérance est considérée comme la distance maximale de la corde.



Tolérance large de 0,100



Tolérance stricte de 0,001

Le mouvement de fraisage par contournage des machines CNC est contrôlé à l'aide des commandes de ligne G1 et d'arc G2 G3. Pour s'adapter à ce comportement, la FAO calcule une approximation des trajectoires d'outil de spline et de surface en linéarisant celles-ci. Elle crée ainsi de nombreux segments de ligne courts destinés à représenter approximativement la forme souhaitée. La précision de l'adéquation entre la trajectoire d'outil et la forme souhaitée dépend largement du nombre de lignes utilisé. En effet, plus le nombre de lignes est important, plus la trajectoire d'outil s'approche de la forme nominale de la spline ou de la surface.

Phénomène du "data starving"

Il peut s'avérer tentant d'avoir systématiquement recours à des valeurs de tolérances très strictes, mais cela s'accompagnera toutefois de certains inconvénients : augmentation de la durée de calcul des trajectoires d'outil, augmentation de la taille des fichiers de code G et mouvements de ligne très courts. Les deux premiers points ne posent guère problème, car Inventor HSM exécute rapidement les calculs, et la plupart des commandes modernes disposent d'au moins 1 Mo de RAM. Cependant, les mouvements de ligne courts, associés à des avances importantes, peuvent entraîner un phénomène connu sous le nom de "data starving".

Ce phénomène se produit lorsque la commande, submergée par la profusion de données à traiter, ne parvient plus à suivre. Les commandes CNC peuvent uniquement traiter un nombre fini de lignes de code (blocs) par seconde. Cela peut représenter à peine 40 blocs/seconde sur les anciennes machines et 1 000 blocs/seconde ou plus sur une machine récente, telle que les modèles de Haas Automation. Il arrive que les mouvements de ligne courts et les avances importantes forcent la vitesse de traitement au-delà des capacités de gestion de la commande. Lorsque cela se produit, la machine doit marquer une pause après chaque mouvement et attendre l'émission de la commande servo suivante.

Extension des passes :

Distance de prolongement des passes au-delà de la limite d'usinage.



Extension des passes

Compensation latérale :

Ce paramètre détermine le côté de la trajectoire d'outil à partir duquel le centre de l'outil est décalé. Définissez la compensation latérale sur Gauche (fraisage en avalant) ou Droite (fraisage conventionnel).

Avec le fraisage en avalant, l'outil de coupe ''roule'' sur la surface faisant l'objet de la coupe. Cette technique permet généralement d'obtenir une meilleure finition pour la plupart des métaux, mais nécessite une bonne rigidité de la machine. Avec cette méthode, les premiers copeaux sont à l'épaisseur maximale et cette épaisseur diminue ensuite à mesure que l'opération de coupe progresse. Ainsi, les copeaux retiennent davantage de chaleur que la pièce.

Avec le fraisage conventionnel, l'outil de coupe avance dans le sens inverse de sa rotation sur la surface faisant l'objet de la coupe. Cette méthode est plus couramment employée avec des machines manuelles ou moins rigides. Elle présente certains avantages et peut même permettre d'obtenir une meilleure finition lors de l'usinage de matières spécifiques, notamment certains bois.

Répéter les passes

Cochez cette case pour effectuer deux fois la passe de finition finale en vue d'enlever le brut restant suite à la déviation de l'outil.

Conserve l'ordre

Indique que les fonctions sont usinées dans l'ordre dans lequel elles ont été sélectionnées. Lorsque cette option est désactivée, Inventor HSM optimise l'ordre de coupe.

Deux modes

Indique que l'opération utilise à la fois le fraisage avalant et le fraisage classique pour usiner les profils ouverts.



Désélectionné



Segments sélectionnés

Remarque : Cette option contrôle seulement comment plusieurs coupes en profondeur sont effectuées sur un seul contour ouvert. Elle n'optimise pas le sens de coupe de plusieurs contours ouverts.

Angle maximum (degrés) :

Indique la valeur de plongée maximale des passes.

Offset en Z :

Indique la valeur de décalage axial de la trajectoire d'outil pour le contour sélectionné.

Passes d'offset en Z

Activez cette option pour effectuer plusieurs ouvertures de profondeur.

Les passes d'offset en Z permettent de créer plusieurs passes de décalage en Z incrémentielles dans de nombreuses stratégies de finition 3D. Elles fonctionnent comme plusieurs pas en Z de finition dans les opérations 2D et sont utiles pour l'enlèvement d'une quantité fixe de brut à l'aide de plusieurs passes.



Désactivé



Passes d'offset 3 axes

Passe maximum en Z

Indique la valeur de passe maximale entre niveaux Z pour l'ébauche.



Pas en Z maximum illustré sans les pas en Z de finition

Remarque : Les pas en Z séquentiels sont effectués selon la valeur du paramètre Passe maximum en Z. Le pas en Z de l'ébauchage final retire la matière restante une fois que celle-ci est inférieure à la valeur Passe maximum en Z.

Nombre de passes en Z

Indique le nombre de passes en Z voulu.

Tri par profondeurs

Indique que les passes doivent être triées de haut en bas.



Désactivé



Activé

Fraisage vers le haut/bas

Cette option permet de décomposer chaque passe en plusieurs segments de manière à usiner chaque section en utilisant des mouvements allant exclusivement vers le bas ou vers le haut. Cette méthode s'avère pratique lors de l'utilisation de fraises à lames rapportées limitées à une direction de coupe précise.



Sans effet



Usinage vers le bas

Surépaisseur



Positive

Surépaisseur positive : quantité de brut restant après une opération. Cette quantité doit ensuite être supprimée à l'aide d'opérations d'ébauche et de finition. Dans le cas d'opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière.



Aucune

Aucune surépaisseur : enlève l'excédent de matière jusqu'à la géométrie sélectionnée.



Négative

Surépaisseur négative : enlève la matière au-delà de la surface de la pièce ou de la limite. Cette technique est souvent employée dans l'électro-érosion pour tolérer un éclateur ou pour répondre aux exigences de tolérance d'une pièce.

Surépaisseur radiale

Le paramètre Surépaisseur radiale détermine la quantité de matière à conserver dans la direction radiale (perpendiculaire à l'axe de l'outil), c'est-à-dire sur le côté de l'outil.



Surépaisseur radiale



Surépaisseur radiale et surépaisseur en Z

La définition d'une valeur positive pour le paramètre de surépaisseur radiale permet de conserver de la matière sur les parois verticales et les zones pentues de la pièce.

Dans le cas des surfaces qui ne sont pas parfaitement verticales, Inventor HSM procède à une interpolation entre les valeurs de surépaisseur en Z (au sol) et de surépaisseur radiale. De ce fait, il se peut que le brut restant dans la direction radiale sur ces surfaces soit différent de la valeur spécifiée, selon la pente de la surface et la valeur de surépaisseur en Z définie.

La modification de la valeur de surépaisseur radiale définit automatiquement la valeur de surépaisseur en Z sur la même quantité, à moins de spécifier manuellement cette dernière.

Dans le cadre des opérations de finition, la valeur par défaut est égale à 0 mm/0 po ; autrement dit, aucune quantité de matière n'est conservée.

Pour les opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière qui peut ensuite être enlevée ultérieurement au moyen d'une ou de plusieurs opérations de finition.

Surépaisseur négative

Lorsque vous utilisez une surépaisseur négative, l'opération d'usinage enlève plus de matière du brut que la forme de votre modèle ne le précise. Ce paramètre peut s'employer pour usiner des électrodes dotées d'un éclateur dont la taille est égale à la surépaisseur négative.

Les valeurs des paramètres de surépaisseur radiale et de surépaisseur en Z peuvent toutes deux être négatives. Cependant, la valeur de surépaisseur radiale négative doit être inférieure au rayon de l'outil.

Lorsque vous utilisez une fraise boule ou hémisphérique dont la valeur de surépaisseur radiale négative est supérieure au rayon de coin, la surépaisseur en Z négative doit être inférieure ou égale à la valeur de ce rayon de coin.

Surépaisseur en Z (sol)

Le paramètre Surépaisseur en Z détermine la quantité de matière à conserver dans la direction axiale (le long de l'axe Z), c'est-à-dire à l'extrémité de l'outil.



Surépaisseur en Z



Surépaisseur radiale et surépaisseur en Z

La définition d'une valeur positive pour le paramètre de surépaisseur en Z permet de conserver de la matière sur les zones peu profondes de la pièce.

Dans le cas des surfaces qui ne sont pas parfaitement horizontales, Inventor HSM procède à une interpolation entre les valeurs de surépaisseur en Z et de surépaisseur radiale (paroi). De ce fait, il se peut que le brut restant dans la direction axiale sur ces surfaces soit différent de la valeur spécifiée, selon la pente de la surface et la valeur de surépaisseur radiale définie.

La modification de la valeur de surépaisseur radiale définit automatiquement la valeur de surépaisseur en Z sur la même quantité, à moins de spécifier manuellement cette dernière.

Dans le cadre des opérations de finition, la valeur par défaut est égale à 0 mm/0 po ; autrement dit, aucune quantité de matière n'est conservée.

Pour les opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière qui peut ensuite être enlevée ultérieurement au moyen d'une ou de plusieurs opérations de finition.

Surépaisseur négative

Lorsque vous utilisez une surépaisseur négative, l'opération d'usinage enlève plus de matière du brut que la forme de votre modèle ne le précise. Ce paramètre peut s'employer pour usiner des électrodes dotées d'un éclateur dont la taille est égale à la surépaisseur négative.

Les valeurs des paramètres de surépaisseur radiale et de surépaisseur en Z peuvent toutes deux être négatives. Cependant, lorsque vous utilisez une fraise boule ou hémisphérique dont la valeur de surépaisseur radiale négative est supérieure au rayon de coin, la surépaisseur en Z négative doit être inférieure ou égale à la valeur de ce rayon de coin.

Lissage

Lisse la trajectoire d'outil en supprimant des points et des arcs d'ajustement en trop dans la mesure du possible et dans la plage de tolérance de filtrage donnée.



Lissage désactivé



Lissage activé

Le lissage permet de réduire la taille du code sans sacrifier la précision. Le principe du lissage est le suivant : les lignes colinéaires sont remplacées par une seule ligne et les lignes multiples des zones incurvées par des arcs tangents.

Les effets du lissage peuvent être considérables. La taille du fichier de code G peut être réduite de moitié, voire plus. La machine fonctionnera plus rapidement et de manière plus fluide, et la finition de surface aura un meilleur aspect. La proportion de réduction du code dépend de la façon dont la trajectoire d'outil se prête au lissage. Le filtrage fonctionne bien pour les trajectoires d'outil situées essentiellement sur un plan principal (XY, XZ ou YZ), telles que les trajectoires parallèles. En revanche, les autres types, comme les crêtes en 3D, sont moins réduits.

Tolérance de lissage

Indique la tolérance du filtre de lissage.

Le lissage donne des résultats optimaux lorsque la tolérance (c'est-à-dire la précision avec laquelle la trajectoire linéarisée initiale est générée) est supérieure ou égale à la tolérance de lissage (ajustement de l'arc de ligne).

Remarque : La tolérance totale, c'est-à-dire la distance par rapport à laquelle la trajectoire d'outil peut dévier de la forme de spline ou de surface idéale, correspond à la somme de la tolérance d'ouverture et de la tolérance de lissage. Par exemple, si vous définissez une tolérance d'ouverture de 0,0004 po et une tolérance de lissage de 0,0004 po, cela signifie que la trajectoire d'outil peut s'écarter de la forme de spline ou de surface d'origine d'une valeur maximale de 0.0008 po par rapport à la trajectoire idéale.

Optimisation Avance

Indique que l'avance doit être réduite au niveau des coins.

Changement de direction maximum

Précise le changement angulaire maximal autorisé avant la réduction de l'avance.

Rayon d'avance réduite

Indique le rayon minimal autorisé avant la réduction de l'avance.

Distance d'avance réduite

Spécifie la distance de réduction de l'avance avant un coin.

Avance réduite

Indique l'avance réduite à appliquer dans les coins.

Seulement des coins intérieurs

Activez cette option pour réduire uniquement l'avance sur les coins intérieurs.

Paramètres de l'onglet Liaison entre passes



Type de rétraction

Détermine la façon dont l'outil se déplace entre les passes de coupe. Dans les images suivantes, la stratégie 5 axes isoparamétrique est appliquée.

Dans le cas des machines CNC qui ne prennent pas en charge les mouvements rapides linéarisés, il est possible de modifier le post-processeur afin de convertir tous les mouvements G0 en mouvements G1 UGV. Pour obtenir de plus amples informations et des instructions sur la modification des post-processeurs évoquée, contactez l'assistance technique.

Mode UGV

Indique les situations dans lesquelles les mouvements rapides doivent être convertis en mouvements réellement rapides (G0) et quand ils doivent être convertis en mouvements UGV (G1).

Ce paramètre est généralement défini pour éviter les collisions lors des mouvements rapides sur les machines qui effectuent des mouvements de type "déviation" en ces endroits.

Haute vitesse

Avance à utiliser pour les mouvements rapides traduits en mouvements G1 plutôt que G0.

Distance de sécurité

Distance minimale entre l'outil et les surfaces de la pièce lors des mouvements de rétraction. Cette distance est mesurée après l'application de la surépaisseur, de sorte que si une surépaisseur négative est utilisée, il convient de faire particulièrement attention à ce que la distance de sécurité soit suffisamment grande pour éviter les collisions.

laisser outil baissé

Lorsque cette option est activée, la stratégie évite toute rétraction lorsque la distance jusqu'à la prochaine zone est inférieure à la distance de suspension indiquée.

Distance maximum outil baissé

Indique la distance maximale autorisée pour les mouvements avec l'outil baissé.



Distance maximum outil baissé de 1"



Distance maximum outil baissé de 2"

Entrée

Activez ce paramètre pour générer une entrée.



Entrée

Rayon d'entrée vertical

Rayon de l'arc vertical destiné à lisser le mouvement d'entrée en direction de la trajectoire d'outil elle-même.



Rayon d'entrée vertical

Sortie

Activez ce paramètre pour générer une sortie.



Sortie

Idem entrée

Indique que la définition de la sortie doit être identique à celle de l'entrée.

Rayon de sortie vertical

Spécifie le rayon à appliquer à la sortie verticale.



Rayon de sortie vertical