A propos de l'ébauche 2D adaptative



Mode d'accès :

Ruban : onglet FAO groupe de fonctions Fraisage 2D Adaptatif 2D

Une stratégie Ebauche 3D adaptative crée une trajectoire d'outil à partir de contours enchaînés plutôt que de surfaces ou de solides. Il est possible de définir un angle de dépouille pour les parois.

Paramètres de l'onglet Outil



Lubrifiant

Type de lubrifiant employé avec l'outil.

Vitesse de broche

Vitesse de rotation de la broche.

Vitesse de surface

Vitesse de la broche exprimée en tant que vitesse de l'outil sur la surface.

Vitesse de broche de rampe

Vitesse de rotation de la broche lors des mouvements de la rampe.

Avance

Avance utilisée dans les mouvements de l'outil.

Avance par dent

Avance de coupe exprimée en tant qu'avance par dent.

Vitesse d'entrée

Avance utilisée lors de la progression dans un mouvement de l'outil.

Vitesse de sortie

Avance utilisée lors de la sortie d'un mouvement de l'outil.

Avance rampe

Avance utilisée lors de la réalisation de rampes en hélice dans le brut.

Avance de plongée

Avance utilisée lors de la plongée dans le brut.

Avance par tour

Avance de plongée exprimée en tant qu'avance par tour.

Paramètres de l'onglet Géométrie



Contours de brut

Activez cette option pour spécifier le périmètre du brut devant faire l'objet d'un ajustage au nu.

Orientation de l'outil

Spécifie le mode d'orientation de l'outil à l'aide d'une combinaison d'options d'origine et d'orientation du trièdre.

Le menu déroulant Orientation propose les options suivantes pour définir l'orientation des axes X, Y et Z du trièdre :

Le menu déroulant Origine propose les options suivantes pour localiser l'origine du trièdre :

Paramètres de l'onglet Hauteurs



Hauteur de sécurité

La hauteur de sécurité correspond à la première hauteur que l'outil atteint sur son chemin en direction du début de la trajectoire d'outil.



Hauteur de sécurité

Décalage de hauteur de dégagement

Le paramètre Décalage de hauteur de dégagement est appliqué. Il est défini par rapport à la hauteur de dégagement sélectionnée dans la liste déroulante ci-dessus.

Hauteur de rétraction

La hauteur de rétraction spécifie la hauteur qu'atteint l'outil avant la passe de coupe suivante. Elle doit être définie sur une valeur supérieure à celle des paramètres Hauteur d'avance et Haut. La hauteur de rétraction s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.



Hauteur de rétraction

Offset hauteur de rétraction

Le paramètre Décalage hauteur de rétraction est appliqué. Il est défini par rapport à la hauteur de rétraction sélectionnée dans la liste déroulante ci-dessus.

Hauteur supérieure

La hauteur supérieure définit la hauteur qui décrit le haut de la coupe. Elle doit être définie sur une valeur supérieure à celle du paramètre Bas. La hauteur supérieure s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.



Hauteur de la partie supérieure

Décalage dessus de brut

Le paramètre Décalage dessus de brut est appliqué. Il est défini par rapport à la hauteur supérieure sélectionnée dans la liste déroulante ci-dessus.

Hauteur inférieure

La hauteur inférieure détermine les valeurs finales de hauteur et de profondeur d'usinage, ainsi que la profondeur maximale atteinte par l'outil dans le brut. Elle doit être définie sur une valeur inférieure à celle du paramètre Haut. La hauteur inférieure s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.



Profondeur d'Usinage

Décalage de profondeur d'usinage

Le paramètre Décalage de profondeur d'usinage est appliqué. Il est défini par rapport à la hauteur inférieure sélectionnée dans la liste déroulante ci-dessus.

Paramètres de l'onglet Passes



Tolérance

Tolérance utilisée lors de la linéarisation d'une géométrie telle que des splines et des ellipses. La tolérance est considérée comme la distance maximale de la corde.



Tolérance large de 0,100



Tolérance stricte de 0,001

Le mouvement de fraisage par contournage des machines CNC est contrôlé à l'aide des commandes de ligne G1 et d'arc G2 G3. Pour s'adapter à ce comportement, la FAO calcule de manière approximative les trajectoires d'outil de spline et de surface en leur appliquant une linéarité. De nombreux segments de ligne courts destinés à représenter approximativement la forme souhaitée sont ainsi créés. La précision de l'adéquation entre la trajectoire d'outil et la forme souhaitée dépend largement du nombre de lignes utilisé. En effet, plus le nombre de lignes est important, plus la trajectoire d'outil s'approche de la forme nominale de la spline ou de la surface.

Phénomène du "data starving"

Il peut s'avérer tentant d'avoir systématiquement recours à des valeurs de tolérances très strictes, mais cela s'accompagnera toutefois de certains inconvénients : augmentation de la durée de calcul des trajectoires d'outil, augmentation de la taille des fichiers de code G et mouvements de ligne très courts. Les deux premiers points ne posent guère problème, car Inventor HSM exécute rapidement les calculs et la plupart des commandes modernes disposent d'au moins 1 Mo de RAM. Cependant, les courts déplacements linéaires, associés à une haute vitesse, peuvent entraîner un phénomène connu sous le nom de privation de données.

Ce phénomène se produit lorsque la commande, submergée par la profusion de données à traiter, ne parvient plus à suivre. Les commandes CNC peuvent uniquement traiter un nombre fini de lignes de code (blocs) par seconde. Cela peut représenter à peine 40 blocs/seconde sur les anciennes machines et 1 000 blocs/seconde ou plus sur une machine récente, telle que les modèles de Haas Automation. Il arrive que les mouvements de ligne courts et les avances importantes forcent la vitesse de traitement au-delà des capacités de gestion de la commande. Lorsque cela se produit, la machine doit marquer une pause après chaque mouvement et attendre l'émission de la commande servo suivante.

Chargement optimal :

Indique le degré d'insertion que les stratégies adaptatives doivent maintenir.

Remarque : Les trajectoires d'outil de dégagement héritées provoquent une insertion irrégulière de l'outil tout au long de l'opération de dégagement. L'utilisation d'une stratégie Ebauche 3D adaptative offre des taux d'élimination de la matière 40 % plus rapides, les coupes de plus grande profondeur pouvant être effectuées en toute confiance puisque l'outil ne connaîtra jamais de pics lors de son insertion, ce qui provoquerait sa rupture.


Trajectoire d'outil d'ébauche haute vitesse



Trajectoire d'outil d'ébauche héritée

Rayon d'outil minimum



Paramètre Rayon d'outil minimum activé

Rayon d'outil minimum défini : les angles vifs de la trajectoire d'outil sont évités par la limitation des marques transversales dans les pièces finies.



Paramètre Rayon d'outil minimum désactivé

Rayon d'outil minimum non défini : la trajectoire d'outil tente d'éliminer la matière dans toutes les zones que l'outil sélectionné peut atteindre. Cela produit des angles vifs dans la trajectoire d'outil, ce qui engendre fréquemment du broutage dans la pièce usinée.

Remarque : Lorsque ce paramètre est activé, une quantité plus importante de matière reste conservée dans les coins internes. Par conséquent, des opérations de reprise de matière restante doivent être effectuées ultérieurement au moyen d'un outil plus petit.

Utiliser l'ébauche de rainure

Activez ce paramètre pour démarrer l'ébauche de la poche avec une rainure le long de son centre avant de poursuivre avec un mouvement en spirale vers la paroi de la poche. Cette fonction peut être utilisée pour réduire le mouvement de liaison dans les angles de certaines poches.



Utiliser l'ébauche de rainure activé



Utiliser l'ébauche de rainure désactivé

Largeur d'ébauche de rainure :

Largeur de la rainure d'ébauche initiale le long du centre de la poche avant le mouvement en spirale vers la paroi de la poche.



Largeur d'ébauche de rainure

Direction

L'option Direction vous permet de configurer Inventor HSM pour qu'il tente de conserver un fraisage de type Avalant ou Opposition.

A faire : Selon la géométrie utilisée, il n'est pas toujours possible de conserver un fraisage en avalant ou en opposition tout au long de la trajectoire d'outil.

Avalant

Sélectionnez Avalant pour usiner toutes les passes dans une seule direction. Lorsque cette méthode est appliquée, Inventor HSM tente d'utiliser un fraisage en avalant par rapport aux limites sélectionnées.



Avalant

Opposition

Ce paramètre permet d'inverser la direction de la trajectoire d'outil par rapport au paramètre Avalant afin de générer une trajectoire d'outil de fraisage en opposition.



Opposition

Profondeurs multiples

Indique que plusieurs profondeurs sont à usiner.



Avec plusieurs coupes en profondeur



Sans ouvertures de profondeurs multiples

Remarque : Les stratégies Ebauche 3D adaptative permettent des coupes en profondeur bien plus agressives que les poches 2D héritées.

Passe en Z maxi d'ébauche

Indique la valeur de passe maximale entre niveaux Z pour l'ébauche.



Pas en Z maximum illustré sans les pas en Z de finition

Remarque : Les pas en Z séquentiels sont effectués selon la valeur du paramètre Passe maximum en Z. Le pas en Z d'ébauche finale usine le brut restant lorsque sa valeur est inférieure à celle du paramètre Passe maximum en Z.

Tri par profondeurs

Indique que les passes doivent être triées de haut en bas.



Désactivé



Activé

Surépaisseur



Positive

Surépaisseur positive : quantité de brut restant après une opération. Cette quantité doit ensuite être supprimée à l'aide d'opérations d'ébauche et de finition. Dans le cas d'opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière.



Aucune

Aucune surépaisseur : enlève l'excédent de matière jusqu'à la géométrie sélectionnée.



Négative

Surépaisseur négative : enlève la matière au-delà de la surface de la pièce ou de la limite. Cette technique est souvent employée dans l'électro-érosion pour tolérer un éclateur ou pour répondre aux exigences de tolérance d'une pièce.

Surépaisseur radiale

Le paramètre Surépaisseur radiale détermine la quantité de matière à conserver dans la direction radiale (perpendiculaire à l'axe de l'outil), c'est-à-dire sur le côté de l'outil.



Surépaisseur radiale



Surépaisseur radiale et surépaisseur en Z

La définition d'une valeur positive pour le paramètre de surépaisseur radiale permet de conserver de la matière sur les parois verticales et les zones pentues de la pièce.

Dans le cas des surfaces qui ne sont pas parfaitement verticales, Inventor HSM procède à une interpolation entre les valeurs de surépaisseur en Z (au sol) et de surépaisseur radiale. De ce fait, il se peut que le brut restant dans la direction radiale sur ces surfaces soit différent de la valeur spécifiée, selon la pente de la surface et la valeur de surépaisseur en Z définie.

La modification de la valeur de surépaisseur radiale définit automatiquement la valeur de surépaisseur en Z sur la même quantité, à moins de spécifier manuellement cette dernière.

Dans le cadre des opérations de finition, la valeur par défaut est égale à 0 mm/0 po ; autrement dit, aucune quantité de matière n'est conservée.

Pour les opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière qui peut ensuite être enlevée ultérieurement au moyen d'une ou de plusieurs opérations de finition.

Surépaisseur négative

Lorsque vous utilisez une surépaisseur négative, l'opération d'usinage enlève plus de matière du brut que la forme de votre modèle ne le précise. Ce paramètre peut s'employer pour usiner des électrodes dotées d'un éclateur dont la taille est égale à la surépaisseur négative.

Les valeurs des paramètres de surépaisseur radiale et de surépaisseur en Z peuvent toutes deux être négatives. Cependant, la valeur de surépaisseur radiale négative doit être inférieure au rayon de l'outil.

Lorsque vous utilisez une fraise boule ou hémisphérique dont la valeur de surépaisseur radiale négative est supérieure au rayon de coin, la surépaisseur en Z négative doit être inférieure ou égale à la valeur de ce rayon de coin.

Surépaisseur en Z (sol)

Le paramètre surépaisseur en Z contrôle la quantité de matière à laisser dans la direction axiale (le long de l'axe Z), c'est-à-dire, à l'extrémité de l'outil.



Surépaisseur en Z



Surépaisseur radiale et surépaisseur en Z

La définition d'une valeur positive pour le paramètre de surépaisseur en Z permet de conserver de la matière sur les zones peu profondes de la pièce.

Dans le cas des surfaces qui ne sont pas parfaitement horizontales, Inventor HSM procède à une interpolation entre les valeurs de surépaisseur en Z et de surépaisseur radiale (paroi). De ce fait, il se peut que le brut restant dans la direction axiale sur ces surfaces soit différent de la valeur spécifiée, selon la pente de la surface et la valeur de surépaisseur radiale définie.

La modification de la valeur de surépaisseur radiale définit automatiquement la valeur de surépaisseur en Z sur la même quantité, à moins de spécifier manuellement cette dernière.

Dans le cadre des opérations de finition, la valeur par défaut est égale à 0 mm/0 po ; autrement dit, aucune quantité de matière n'est conservée.

Pour les opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière qui peut ensuite être enlevée ultérieurement au moyen d'une ou de plusieurs opérations de finition.

Surépaisseur négative

Lorsque vous utilisez une surépaisseur négative, l'opération d'usinage enlève plus de matière du brut que la forme de votre modèle ne le précise. Ce paramètre peut s'employer pour usiner des électrodes dotées d'un éclateur dont la taille est égale à la surépaisseur négative.

Les valeurs des paramètres de surépaisseur radiale et de surépaisseur en Z peuvent toutes deux être négatives. Cependant, lorsque vous utilisez une fraise boule ou hémisphérique dont la valeur de surépaisseur radiale négative est supérieure au rayon de coin, la surépaisseur en Z négative doit être inférieure ou égale à la valeur de ce rayon de coin.

Lissage

Lisse la trajectoire d'outil en supprimant des points et des arcs d'ajustement en trop dans la mesure du possible et dans la plage de tolérance de filtrage donnée.



Lissage désactivé



Lissage activé

Le lissage permet de réduire la taille du code sans sacrifier la précision. Le principe du lissage est le suivant : les lignes colinéaires sont remplacées par une seule ligne et les lignes multiples des zones incurvées par des arcs tangents.

Les effets du lissage peuvent être considérables. La taille du fichier de code G peut être réduite de moitié, voire plus. La machine fonctionnera plus rapidement et de manière plus fluide, et la finition de surface aura un meilleur aspect. La proportion de réduction du code dépend de la façon dont la trajectoire d'outil se prête au lissage. Le filtrage fonctionne bien pour les trajectoires d'outil situées essentiellement sur un plan principal (XY, XZ ou YZ), telles que les trajectoires parallèles. En revanche, les autres types, comme les crêtes en 3D, sont moins réduits.

Tolérance de lissage

Indique la tolérance du filtre de lissage.

Le lissage donne des résultats optimaux lorsque la tolérance (c'est-à-dire la précision avec laquelle la trajectoire linéarisée initiale est générée) est supérieure ou égale à la tolérance de lissage (ajustement de l'arc de ligne).

Remarque : La tolérance totale, c'est-à-dire la distance par rapport à laquelle la trajectoire d'outil peut dévier de la forme de spline ou de surface idéale, correspond à la somme de la tolérance d'ouverture et de la tolérance de lissage. Par exemple, si vous définissez une tolérance d'ouverture de 0,0004 po et une tolérance de lissage de 0,0004 po, cela signifie que la trajectoire d'outil peut s'écarter de la forme de spline ou de surface d'origine d'une valeur maximale de 0.0008 po par rapport à la trajectoire idéale.

Optimisation Avance

Indique que l'avance doit être réduite au niveau des coins.

Changement de direction maximum

Précise le changement angulaire maximal autorisé avant la réduction de l'avance.

Rayon d'avance réduite

Indique le rayon minimal autorisé avant la réduction de l'avance.

Distance d'avance réduite

Spécifie la distance de réduction de l'avance avant un coin.

Avance réduite

Indique l'avance réduite à appliquer dans les coins.

Seulement des coins intérieurs

Activez cette option pour réduire uniquement l'avance sur les coins intérieurs.

Paramètres de l'onglet Liaison entre passes



Mode UGV

Indique les situations dans lesquelles les mouvements rapides doivent être convertis en mouvements réellement rapides (G0) et quand ils doivent être convertis en mouvements UGV (G1).

Ce paramètre est habituellement défini pour éviter les collisions au niveau des mouvements rapides sur les machines effectuant de rapides mouvements de déviation.

Haute vitesse

Avance à utiliser pour les mouvements rapides traduits en mouvements G1 plutôt que G0.

Autoriser la rétraction rapide

Lorsque ce paramètre est activé, les rétractions s'effectuent sous forme de mouvements rapides (G0). Désactivez ce paramètre pour forcer les rétractions à la vitesse de sortie.

Distance maximum outil baissé

Indique la distance maximale autorisée pour les mouvements avec l'outil baissé.



Suspension maximale d'1"



Distance maximum outil baissé de 2"

Niveau outil baissé

Ce paramètre permet de déterminer dans quelles situations l'outil doit rester baissé au lieu d'être rétracté lors du contournement d'obstacles. En règle générale, il est préférable d'utiliser une stratégie adaptative où l'outil reste abaissé plus souvent si la vitesse de rétraction de votre machine CNC est faible comparée à la vitesse d'avance. Dans ce cas, augmentez la valeur de niveau dans le menu déroulant Niveau outil baissé. Les valeurs augmentent par incréments de 10 %, le paramètre Le moins étant défini sur 0 % et le paramètre Le plus sur 100 %.

A faire : Gardez à l'esprit que la durée des calculs peut augmenter considérablement lorsque vous augmentez la valeur de Niveau outil baissé.

Hauteur :

Indique la distance de levage lors des mouvements de repositionnement.



Hauteur de 0



Hauteur de 0,1 po

Avance dans les zones sans engagement :

Indique l'avance utilisée pour les déplacements lors desquels l'outil n'est pas en insertion sur la matière, mais n'est pas non plus en rétraction.

Rayon d'entrée horizontal

Spécifie le rayon à appliquer aux mouvements d'entrée horizontaux.



Rayon d'entrée horizontal

Rayon de sortie horizontal

Spécifie le rayon à appliquer aux mouvements de sortie horizontaux.



Rayon de sortie horizontal

Rayon d'entrée vertical

Rayon de l'arc vertical destiné à lisser le mouvement d'entrée en direction de la trajectoire d'outil elle-même.



Rayon d'entrée vertical

Rayon de sortie vertical

Spécifie le rayon à appliquer à la sortie verticale.



Rayon de sortie vertical

Type de rampe

Indique la manière dont l'outil se déplace vers le bas pour effectuer chaque ouverture de profondeur.



Plongée en dehors du brut



Pré-perçage

Pour pouvoir utiliser l'option Pré-perçage, vous devez définir au préalable un ou plusieurs emplacements à cet effet.



Tréflage



Zig-zag

Observez les transitions lisses du type de rampe en zig-zag.



Profil



Profil de lisse



Hélice

Angle de rampe (deg)

Indique l'angle de rampe maximal.

Angle de dépouille de rampe (degrés)

Angle de dépouille souhaité pour les rampes hélicoïdales. Ce paramètre permet de maintenir la queue d'outil à distance du brut et d'améliorer l'évacuation des copeaux lors de la plongée en rampe.

Hauteur de sécurité rampe

Hauteur de la rampe au-dessus du niveau de brut actuel.

Diamètre de rampe hélicoïdale

Spécifie le diamètre de la rampe hélicoïdale.

Diamètre de rampe minimum :

Spécifie le diamètre minimal de la rampe.

Positions de pré-perçage

Sélectionnez les points au niveau desquels des trous ont été percés pour permettre le passage de l'outil de coupe dans la matière.

Positions d'entrée

Sélectionnez la géométrie à proximité de l'emplacement auquel vous souhaitez faire passer l'outil.