Mode d'accès : |
Ruban :
onglet FAO
![]() ![]() ![]() |
La stratégie Spirale variable est très semblable à la stratégie Spirale. Toutefois, une opération de type Spirale variable génère la spirale à partir de la limite sélectionnée, alors qu'une opération Spirale ajuste les passes générées à la limite d'usinage. Autrement dit, il est possible d'utiliser la stratégie Spirale variable afin d'usiner des surfaces supplémentaires pour lesquelles la stratégie Spirale ne convient pas.
L'option Spirale variable peut être très utile lors de l'usinage de surfaces de forme libre/organiques. Bien que la stratégie Crête soit souvent appliquée à ces types de surfaces, les angles vifs et les transitions de liaison entre les passes générées peuvent produire des marques visibles. La stratégie Spirale variable offre généralement une trajectoire d'outil nettement plus lisse qui permet d'éviter de rencontrer ce genre de problème.
Bien qu'une stratégie Crête constante soit souvent utilisée pour usiner des surfaces de forme libre/organiques...
... une stratégie Spirale variable fournit une trajectoire d'outil plus lisse évitant les marques visibles.
Type de lubrifiant employé avec l'outil.
Vitesse de rotation de la broche.
Vitesse de la broche exprimée en tant que vitesse de l'outil sur la surface.
Vitesse de rotation de la broche lors des mouvements de la rampe.
Avance utilisée dans les mouvements de l'outil.
Avance de coupe exprimée en tant qu'avance par dent.
Avance utilisée lors de la progression dans un mouvement de l'outil.
Avance utilisée lors de la sortie d'un mouvement de l'outil.
Avance utilisée lors de la réalisation de rampes en hélice dans le brut.
Avance utilisée lors de la plongée dans le brut.
Avance de plongée exprimée en tant qu'avance par tour.
Lors de l'utilisation d'un porte-outil, vous pouvez choisir parmi cinq modes d'arbre et porte-outil différents, en fonction de la stratégie d'usinage adoptée. Il est possible de gérer les collisions se rapportant à la fois à l'arbre et au porte-outil, et de définir des hauteurs de sécurité en conséquence.
Désactivé
Eloigner
Coupé
Détection de la longueur d'outil
Indique que l'arbre de l'outil sélectionné sera utilisé dans le calcul de la trajectoire d'outil afin d'éviter les collisions.
L'arbre de l'outil est toujours maintenu à cette distance de la pièce.
Indique que le porte-outil de l'outil sélectionné sera utilisé dans le calcul de la trajectoire d'outil afin d'éviter les collisions.
Le porte-outil de l'outil est toujours maintenu à cette distance de la pièce.
Le mode de limites spécifie la façon dont la limite de la trajectoire d'outil est définie. Les images suivantes illustrent l'utilisation d'une trajectoire d'outil radiale 3D.
Exemple 1
Exemple 2
Modes de limites disponibles :
Cube capable
Silhouette
Sélection
Le confinement d'outil permet de contrôler la position de l'outil par rapport aux limites sélectionnées.
Intérieur
La totalité de l'outil reste à l'intérieur de la limite. Par conséquent, il se peut que la surface délimitée par le contour ne soit pas entièrement usinée.
Intérieur
Centrer
La limite est circonscrite au centre de l'outil. Ce paramètre garantit que la totalité de la surface située à l'intérieur de la limite est usinée. Toutefois, les zones situées à l'extérieur des limites peuvent également être usinées.
Centrer
Extérieur
La trajectoire d'outil est créée à l'intérieur de la limite, mais le bord de l'outil peut se déplacer sur l'arête extérieure de la limite.
Extérieur
Pour décaler le confinement de limite, utilisez le paramètre Offset additionnel.
L'offset additionnel est un décalage appliqué aux limites sélectionnées et au confinement de l'outil.
Une valeur positive permet de décaler la limite vers l'extérieur, à moins que le confinement d'outil soit défini sur Intérieur, auquel cas une valeur positive entraîne un décalage vers l'intérieur.
Décalage négatif avec le centre de l'outil sur la limite
Absence de décalage avec le centre de l'outil sur la limite
Décalage positif avec le centre de l'outil sur la limite
Afin de vous assurer que le bord de l'outil chevauche la limite, sélectionnez la méthode de confinement de l'outil Extérieur et spécifiez une valeur positive faible.
Afin de vous assurer que le bord de l'outil se trouve complètement en dehors de la limite, sélectionnez la méthode de confinement de l'outil Intérieur et spécifiez une valeur positive faible.
Lorsque cette option est activée, elle indique que la limite définit le point où l'outil entre en contact avec la pièce plutôt que l'emplacement du centre de l'outil.
Désactivé
Activé
La différence est illustrée ci-dessous, sur une trajectoire d'outil de type Parallèle utilisant une fraise boule.
Désactivé
Activé
Détermine si des trajectoires d'outil sont générées aux emplacements où l'outil n'est pas en contact avec la surface d'usinage. Lorsque cette option est désactivée, les trajectoires d'outil sont prolongées jusqu'aux limites du contour de confinement et sur les ouvertures de la pièce de travail.
Activé
Désactivé
Contient les trajectoires d'outil en fonction d'une plage d'angles spécifiés.
0° - 90°
0° - 45°
45° - 90°
Vous spécifiez le confinement d'angle de plongée au moyen des paramètres d'angle Depuis l'angle de plongée et Jusqu'à l'angle de plongée disponibles sous l'onglet Géométrie. Les angles sont définis sur une valeur comprise entre 0° (à l'horizontale) et 90° (à la verticale).
Seules les zones dont les valeurs sont supérieures ou égales à celles spécifiées à l'aide des paramètres Depuis l'angle de plongée et Jusqu'à l'angle de plongée sont usinées.
La plupart des stratégies de finition 3D prennent en charge le confinement de l'angle de plongée. Le confinement d'angle de plongée peut servir à limiter une stratégie de trajectoire d'outil sélectionnée aux seuls angles à laquelle elle est parfaitement adaptée. Par exemple, la stratégie Finition parallèle convient mieux aux zones peu profondes, tandis que la stratégie Finition contour est plus adaptée aux zones pentues.
Le paramètre Depuis l'angle de plongée est défini à partir du plan à 0° (horizontal). Seules les zones dont les valeurs sont supérieures ou égales à cette valeur sont usinées.
Angle de plongée à partir de 0°
Le paramètre Jusqu'à l'angle de plongée est défini à partir du plan à 0° (horizontal). Seules les zones dont les valeurs sont inférieures ou égales à cette valeur sont usinées.
Angle de plongée jusqu'à 90°
Limite l'opération au simple enlèvement de matière qu'un outil précédent ou qu'une opération antérieure n'est pas parvenu(e) à réaliser.
Paramètre Reprise matière restante ACTIVE
Paramètre Reprise matière restante DESACTIVE
Indique la source à partir de laquelle la reprise de matière restante doit être calculée.
Indique le diamètre de l'outil de reprise de matière restante.
Indique le rayon de coin de l'outil de reprise de matière restante.
Indique l'angle de dépouille de l'outil de reprise de matière restante.
Indique la longueur d'épaulement de l'outil de reprise de matière restante.
Indique le fichier de matière restante.
Permet de sélectionner l'ajustement de reprise de matière restante pour ignorer ou garantir le fraisage de petites crêtes.
Ce paramètre spécifie la quantité de brut à ignorer ou à enlever en plus, selon la configuration du paramètre Ajustement reprise. Ce paramètre s'utilise principalement pour éviter d'usiner de petits restes de matière via le paramètre Ignorer les crêtes.
Spécifie le mode d'orientation de l'outil à l'aide d'une combinaison d'options d'origine et d'orientation du trièdre.
Le menu déroulant Orientation propose les options suivantes pour définir l'orientation des axes X, Y et Z du trièdre :
Le menu déroulant Origine propose les options suivantes pour localiser l'origine du trièdre :
Activez cette option pour remplacer la géométrie du modèle (surfaces/corps) définie dans la configuration.
Cette option est activée par défaut. Le modèle sélectionné dans la configuration est inclus en plus des surfaces du modèle sélectionnées lors de l'opération. Si vous désactivez cette case à cocher, la trajectoire d'outil est uniquement générée sur les surfaces sélectionnées lors de l'opération.
Spécifie les surfaces à éviter. Lorsque cette option est activée, les trajectoires d'outil restent éloignées des surfaces sélectionnées d'après une valeur spécifiée.
Désactivé
Activé
L'outil est toujours maintenu à cette distance des surfaces sélectionnées.
Correspond au sens contraire de la définition du paramètre Surfaces à éviter. Lorsque cette option est activée, les surfaces d'évitement désignent les surfaces à toucher dans les limites de la hauteur de sécurité tandis que les surfaces restantes sont à éviter.
Surfaces à toucher
La hauteur de sécurité correspond à la première hauteur que l'outil atteint sur son chemin en direction du début de la trajectoire d'outil.
Hauteur de sécurité
Le paramètre Décalage de hauteur de dégagement est appliqué. Il est défini par rapport à la hauteur de dégagement sélectionnée dans la liste déroulante ci-dessus.
La hauteur de rétraction spécifie la hauteur qu'atteint l'outil avant la passe de coupe suivante. Elle doit être définie sur une valeur supérieure à celle des paramètres Hauteur d'avance et Haut. La hauteur de rétraction s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.
Hauteur de rétraction
Le paramètre Décalage hauteur de rétraction est appliqué. Il est défini par rapport à la hauteur de rétraction sélectionnée dans la liste déroulante ci-dessus.
La hauteur supérieure définit la hauteur qui décrit le haut de la coupe. Elle doit être définie sur une valeur supérieure à celle du paramètre Bas. La hauteur supérieure s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.
Hauteur de la partie supérieure
Le paramètre Décalage dessus de brut est appliqué. Il est défini par rapport à la hauteur supérieure sélectionnée dans la liste déroulante ci-dessus.
La hauteur inférieure détermine les valeurs finales de hauteur et de profondeur d'usinage, ainsi que la profondeur maximale atteinte par l'outil dans le brut. Elle doit être définie sur une valeur inférieure à celle du paramètre Haut. La hauteur inférieure s'utilise conjointement avec le décalage ultérieur pour définir la hauteur.
Profondeur d'usinage
Le paramètre Décalage de profondeur d'usinage est appliqué. Il est défini par rapport à la hauteur inférieure sélectionnée dans la liste déroulante ci-dessus.
La tolérance d'usinage correspond à la somme des tolérances utilisées pour la génération des trajectoires d'outil et la triangulation de la géométrie. Il convient d'ajouter les éventuelles tolérances de filtrage supplémentaires à cette valeur pour obtenir la valeur de tolérance totale.
Tolérance large de 0,100
Tolérance stricte de 0,001
Le mouvement de fraisage par contournage des machines CNC est contrôlé à l'aide des commandes de ligne G1 et d'arc G2 G3. Pour s'adapter à ce comportement, la FAO calcule une approximation des trajectoires d'outil de spline et de surface en linéarisant celles-ci. Elle crée ainsi de nombreux segments de ligne courts destinés à représenter approximativement la forme souhaitée. La précision de l'adéquation entre la trajectoire d'outil et la forme souhaitée dépend largement du nombre de lignes utilisé. En effet, plus le nombre de lignes est important, plus la trajectoire d'outil s'approche de la forme nominale de la spline ou de la surface.
Phénomène du "data starving"
Il peut s'avérer tentant d'avoir systématiquement recours à des valeurs de tolérances très strictes, mais cela s'accompagnera toutefois de certains inconvénients : augmentation de la durée de calcul des trajectoires d'outil, augmentation de la taille des fichiers de code G et mouvements de ligne très courts. Les deux premiers points ne posent guère problème, car Inventor HSM exécute rapidement les calculs, et la plupart des commandes modernes disposent d'au moins 1 Mo de RAM. Cependant, les mouvements de ligne courts, associés à des avances importantes, peuvent entraîner un phénomène connu sous le nom de "data starving".
Ce phénomène se produit lorsque la commande, submergée par la profusion de données à traiter, ne parvient plus à suivre. Les commandes CNC peuvent uniquement traiter un nombre fini de lignes de code (blocs) par seconde. Cela peut représenter à peine 40 blocs/seconde sur les anciennes machines et 1 000 blocs/seconde ou plus sur une machine récente, telle que les modèles de Haas Automation. Il arrive que les mouvements de ligne courts et les avances importantes forcent la vitesse de traitement au-delà des capacités de gestion de la commande. Lorsque cela se produit, la machine doit marquer une pause après chaque mouvement et attendre l'émission de la commande servo suivante.
Indique si la trajectoire d'outil suit un mouvement de l'entrée vers la sortie ou de sortie vers l'entrée. La sélection de l'option Sans effet réduit l'ordre de tri par distance.
De l'intérieur vers l'extérieur
De l'extérieur vers l'intérieur
Indique que la spirale suit le sens horaire.
Spécifie le pas horizontal entre les passes. Par défaut, cette valeur équivaut à 95 % du diamètre de l'outil déduction faite du rayon de coin de l'outil.
Pas horizontal
L'option de direction vous permet de configurer Inventor HSM pour qu'il tente de conserver un fraisage de type Avalant ou Opposition.
Avalant
Deux Modes
Avalant
Sélectionnez Avalant pour usiner toutes les passes dans une seule direction. Lorsque cette méthode est appliquée, Inventor HSM tente d'utiliser un fraisage en avalant par rapport aux limites sélectionnées.
Opposition
Ce paramètre permet d'inverser la direction de la trajectoire d'outil par rapport au paramètre Avalant afin de générer une trajectoire d'outil de fraisage en opposition.
Deux Modes
Lorsque le paramètre Deux Modes est sélectionné, Inventor HSM ignore la direction d'usinage et procède aux liaisons entre passes en suivant des directions qui définissent la trajectoire d'outil la plus courte.
Activez cette option pour effectuer plusieurs ouvertures de profondeur.
Les passes d'offset en Z permettent de créer plusieurs passes de décalage en Z incrémentielles dans de nombreuses stratégies de finition 3D. Elles fonctionnent comme plusieurs pas en Z de finition dans les opérations 2D et sont utiles pour l'enlèvement d'une quantité fixe de brut à l'aide de plusieurs passes. Les images suivantes sont présentées avec l'option Parallèle 3D.
Désactivé
Passes d'offset 3 axes
Indique la valeur de passe maximale entre niveaux Z pour l'ébauche.
Passe maximum en Z - présentée sans pas en Z de finition
Indique le nombre de passes en Z voulu.
Indique que les passes doivent être triées de haut en bas.
Tri par profondeurs désactivé
Tri par profondeurs activé
Cette option permet de décomposer chaque passe en plusieurs segments de manière à usiner chaque section en utilisant des mouvements allant exclusivement vers le bas ou vers le haut. Cette méthode s'avère pratique lors de l'utilisation de fraises à lames rapportées limitées à une direction de coupe précise.
Sans effet
Usinage vers le bas
Positive
Surépaisseur positive : quantité de brut restant après une opération. Cette quantité doit ensuite être supprimée à l'aide d'opérations d'ébauche et de finition. Dans le cas d'opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière.
Aucune
Aucune surépaisseur : enlève l'excédent de matière jusqu'à la géométrie sélectionnée.
Négative
Surépaisseur négative : enlève la matière au-delà de la surface de la pièce ou de la limite. Cette technique est souvent employée dans l'électro-érosion pour tolérer un éclateur ou pour répondre aux exigences de tolérance d'une pièce.
Le paramètre Surépaisseur radiale détermine la quantité de matière à conserver dans la direction radiale (perpendiculaire à l'axe de l'outil), c'est-à-dire sur le côté de l'outil.
Surépaisseur radiale
Surépaisseur radiale et surépaisseur en Z
La définition d'une valeur positive pour le paramètre de surépaisseur radiale permet de conserver de la matière sur les parois verticales et les zones pentues de la pièce.
Dans le cas des surfaces qui ne sont pas parfaitement verticales, Inventor HSM procède à une interpolation entre les valeurs de surépaisseur en Z (au sol) et de surépaisseur radiale. De ce fait, il se peut que le brut restant dans la direction radiale sur ces surfaces soit différent de la valeur spécifiée, selon la pente de la surface et la valeur de surépaisseur en Z définie.
La modification de la valeur de surépaisseur radiale définit automatiquement la valeur de surépaisseur en Z sur la même quantité, à moins de spécifier manuellement cette dernière.
Dans le cadre des opérations de finition, la valeur par défaut est égale à 0 mm/0 po ; autrement dit, aucune quantité de matière n'est conservée.
Pour les opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière qui peut ensuite être enlevée ultérieurement au moyen d'une ou de plusieurs opérations de finition.
Surépaisseur négative
Lorsque vous utilisez une surépaisseur négative, l'opération d'usinage enlève plus de matière du brut que la forme de votre modèle ne le précise. Ce paramètre peut s'employer pour usiner des électrodes dotées d'un éclateur dont la taille est égale à la surépaisseur négative.
Les valeurs des paramètres de surépaisseur radiale et de surépaisseur en Z peuvent toutes deux être négatives. Cependant, la valeur de surépaisseur radiale négative doit être inférieure au rayon de l'outil.
Lorsque vous utilisez une fraise boule ou hémisphérique dont la valeur de surépaisseur radiale négative est supérieure au rayon de coin, la surépaisseur en Z négative doit être inférieure ou égale à la valeur de ce rayon de coin.
Le paramètre Surépaisseur en Z détermine la quantité de matière à conserver dans la direction axiale (le long de l'axe Z), c'est-à-dire à l'extrémité de l'outil.
Surépaisseur en Z
Surépaisseur radiale et surépaisseur en Z
La définition d'une valeur positive pour le paramètre de surépaisseur en Z permet de conserver de la matière sur les zones peu profondes de la pièce.
Dans le cas des surfaces qui ne sont pas parfaitement horizontales, Inventor HSM procède à une interpolation entre les valeurs de surépaisseur en Z et de surépaisseur radiale (paroi). De ce fait, il se peut que le brut restant dans la direction axiale sur ces surfaces soit différent de la valeur spécifiée, selon la pente de la surface et la valeur de surépaisseur radiale définie.
La modification de la valeur de surépaisseur radiale définit automatiquement la valeur de surépaisseur en Z sur la même quantité, à moins de spécifier manuellement cette dernière.
Dans le cadre des opérations de finition, la valeur par défaut est égale à 0 mm/0 po ; autrement dit, aucune quantité de matière n'est conservée.
Pour les opérations d'ébauche, le comportement par défaut consiste à conserver une petite quantité de matière qui peut ensuite être enlevée ultérieurement au moyen d'une ou de plusieurs opérations de finition.
Surépaisseur négative
Lorsque vous utilisez une surépaisseur négative, l'opération d'usinage enlève plus de matière du brut que la forme de votre modèle ne le précise. Ce paramètre peut s'employer pour usiner des électrodes dotées d'un éclateur dont la taille est égale à la surépaisseur négative.
Les valeurs des paramètres de surépaisseur radiale et de surépaisseur en Z peuvent toutes deux être négatives. Cependant, lorsque vous utilisez une fraise boule ou hémisphérique dont la valeur de surépaisseur radiale négative est supérieure au rayon de coin, la surépaisseur en Z négative doit être inférieure ou égale à la valeur de ce rayon de coin.
Activez cette option pour spécifier un rayon de congé.
Spécifiez un rayon de congé.
Lisse la trajectoire d'outil en supprimant des points et des arcs d'ajustement en trop dans la mesure du possible et dans la plage de tolérance de filtrage donnée.
Lissage désactivé
Lissage activé
Le lissage permet de réduire la taille du code sans sacrifier la précision. Le principe du lissage est le suivant : les lignes colinéaires sont remplacées par une seule ligne et les lignes multiples des zones incurvées par des arcs tangents.
Les effets du lissage peuvent être considérables. La taille du fichier de code G peut être réduite de moitié, voire plus. La machine fonctionnera plus rapidement et de manière plus fluide, et la finition de surface aura un meilleur aspect. La proportion de réduction du code dépend de la façon dont la trajectoire d'outil se prête au lissage. Le filtrage fonctionne bien pour les trajectoires d'outil situées essentiellement sur un plan principal (XY, XZ ou YZ), telles que les trajectoires parallèles. En revanche, les autres types, comme les crêtes en 3D, sont moins réduits.
Indique la tolérance du filtre de lissage.
Le lissage donne des résultats optimaux lorsque la tolérance (c'est-à-dire la précision avec laquelle la trajectoire linéarisée initiale est générée) est supérieure ou égale à la tolérance de lissage (ajustement de l'arc de ligne).
Indique que l'avance doit être réduite au niveau des coins.
Précise le changement angulaire maximal autorisé avant la réduction de l'avance.
Indique le rayon minimal autorisé avant la réduction de l'avance.
Spécifie la distance de réduction de l'avance avant un coin.
Indique l'avance réduite à appliquer dans les coins.
Activez cette option pour réduire uniquement l'avance sur les coins intérieurs.
Détermine la façon dont l'outil se déplace entre les passes de coupe. Dans les images suivantes, la stratégie 5 axes isoparamétrique est appliquée.
Dans le cas des machines CNC qui ne prennent pas en charge les mouvements rapides linéarisés, il est possible de modifier le post-processeur afin de convertir tous les mouvements G0 en mouvements G1 UGV. Pour obtenir de plus amples informations et des instructions sur la modification des post-processeurs évoquée, contactez l'assistance technique.
Indique les situations dans lesquelles les mouvements rapides doivent être convertis en mouvements réellement rapides (G0) et quand ils doivent être convertis en mouvements UGV (G1).
Ce paramètre est généralement défini pour éviter les collisions lors des mouvements rapides sur les machines qui effectuent des mouvements de type "déviation" en ces endroits.
Avance à utiliser pour les mouvements rapides traduits en mouvements G1 plutôt que G0.
Lorsque ce paramètre est activé, les rétractions s'effectuent sous forme de mouvements rapides (G0). Désactivez ce paramètre pour forcer les rétractions à la vitesse de sortie.
Distance minimale entre l'outil et les surfaces de la pièce lors des mouvements de rétraction. Cette distance est mesurée après l'application de la surépaisseur, de sorte que si une surépaisseur négative est utilisée, il convient de faire particulièrement attention à ce que la distance de sécurité soit suffisamment grande pour éviter les collisions.
Indique la distance maximale autorisée pour les mouvements avec l'outil baissé.
Distance maximum outil baissé de 1"
Distance maximum outil baissé de 2"
Spécifie le rayon à appliquer aux mouvements d'entrée horizontaux.
Rayon d'entrée horizontal
Rayon de l'arc vertical destiné à lisser le mouvement d'entrée en direction de la trajectoire d'outil elle-même.
Rayon d'entrée vertical
Spécifie le rayon à appliquer aux mouvements de sortie horizontaux.
Rayon de sortie horizontal
Spécifie le rayon à appliquer à la sortie verticale.
Rayon de sortie vertical
Bouton de sélection permettant de choisir des positions d'entrée.