pymel.core.effects.rigidSolver¶
- rigidSolver(*args, **kwargs)¶
This command sets the attributes for the rigid solver In query mode, return type is based on queried flag.
Flags:
Long Name / Short Name Argument Types Properties autoTolerances / at bool
Turns the auto tolerance calculation on and off. The auto tolerances calculation will override the default or user defined values of the step size and collision tolerance value that is calculated based on the objects in the scene. Default: 0 (off) bounciness / b bool
Turns bounciness on and off for the an the objects in the simulation. Default value: on cacheData / cd bool
Turns the cache on fall all rigid bodies in the system. Default value: off collide / c bool
Disallows the interpenetration of the two rigid bodies listed. Default: Collide is on for all bodies. collisionTolerance / ct float
Sets the collision tolerance. This is the error at which two objects are considered to have collided. Range: 0.0005 - 1.000 Default: 0.02 contactData / ctd bool
Turns the contact data information on/off for all rigid bodies. Default value: off create / cr bool
Creates a new rigid solver. current / cu bool
Sets rigid solver as the current solver. deleteCache / deleteCache bool
Deletes the cache for all rigid bodies in the system. displayCenterOfMass / dcm bool
Displays the center of mass icon. Default value: on displayConstraint / dc bool
Displays the constraint vectors. Default value: on displayVelocity / dv bool
Displays the velocity vectors. Default value: off dynamics / d bool
Turns dynamics on and off for the an the objects in the simulation. Default value: on friction / f bool
Turns friction on and off for the an the objects in the simulation. Default value: on interpenetrate / i bool
Allows the two rigid bodies listed to interpenetrate. Default: interpenetration is off for all bodies. interpenetrationCheck / ic bool
Checks for interpenetrating rigid bodies in the scene. name / n unicode rigidBodies / rb bool
Returns a list of rigid bodies in the solver. rigidBodyCount / rbc bool
Returns the number of rigid bodies in the solver. showCollision / sc bool
Displays the colliding objects in a different color. showInterpenetration / si bool
Displays the interpenetrating objects in a different color. solverMethod / sm int
Sets the solver method. The choices are 0 | 1 | 2. 0 = Euler (fastest/least acurate), 1 = Runge-Kutta ( slower/more acurate), 2 = adaptive Runge-Kutta (slowest/most acurate). The default is 2 (adaptive Runge-Kutta) startTime / stt float
Sets the start time for the solver. state / st bool
Turns the rigid solver on or off. statistics / sta bool
Turns the statistic information on/off for all rigid bodies. Default value: off stepSize / s float
Sets the solvers step size. This is the maximum size of a single step the solver will take at one time. Range: 0.0004 - 0.100 Default: 0.0333 velocityVectorScale / vs float
scales the velocity vector display. Default value: 1.0 Flag can have multiple arguments, passed either as a tuple or a list. Derived from mel command maya.cmds.rigidSolver
Example:
import pymel.core as pm # Set the playback time range to [1, 100] pm.playbackOptions(min=1, max=100) # Result: 1.0 # # Create a poly cube named "floor" pm.polyCube(w=10, h=0.10, d=10, sx=10, sy=1, sz=10, ax=(0, 1, 0), name='floor') # Result: [nt.Transform(u'floor'), nt.PolyCube(u'polyCube1')] # # Create a poly sphere named "ball", then move it to 0 9 0 pm.polySphere(r=1, sx=20, sy=20, ax=(0, 1, 0), name='ball') # Result: [nt.Transform(u'ball'), nt.PolySphere(u'polySphere1')] # pm.move(0, 9.0, 0, r=True) # Create a new rigid body solver pm.rigidSolver(create=True, name='rigidSolver1') # Result: nt.RigidSolver(u'rigidSolver1') # # Set the floor to passive rigid body pm.select('floor') pm.rigidBody(passive=True, solver='rigidSolver1', name='passiveRigidBody') # Result: nt.RigidBody(u'passiveRigidBody') # # Set the ball to active rigid body pm.select('ball') pm.rigidBody(active=True, solver='rigidSolver1', name='activeRigidBody') # Result: nt.RigidBody(u'activeRigidBody') # # Add a gravity field, and connect it to ball pm.gravity(pos=(0, 0, 0), m=9.8, dx=0, dy=-1, dz=0, name='gravityField') # Result: nt.GravityField(u'gravityField') # pm.connectDynamic('activeRigidBody', f='gravityField') # Result: [u'activeRigidBody'] # # Play pm.play(w=True) # Set the rigid solver to allow the ball to interpenetrate the floor, then replay pm.currentTime(1, e=True) # Result: 1.0 # pm.rigidSolver('passiveRigidBody', 'activeRigidBody', 'rigidSolver1', e=True, interpenetrate=True) # Result: nt.RigidSolver(u'rigidSolver1') # pm.play(w=True) # Set the rigid solver to disallow the ball to interpenetrate the floor, replay pm.currentTime(1, e=True) # Result: 1.0 # pm.rigidSolver('passiveRigidBody', 'activeRigidBody', 'rigidSolver1', e=True, collide=True) # Result: nt.RigidSolver(u'rigidSolver1') # pm.play(w=True) # Set the rigid solver to turn off the bounciness, replay pm.currentTime(1, e=True) # Result: 1.0 # pm.rigidSolver('rigidSolver1', e=True, bounciness=False) # Result: nt.RigidSolver(u'rigidSolver1') # pm.play(w=True)