#ifndef CGFXSHADER_VERSION
#define CGFXSHADER_VERSION "4.5"
#endif
#include "cgfxShaderNode.h"
#include "cgfxProfile.h"
#include "cgfxFindImage.h"
#include "cgfxPassStateSetter.h"
#include "cgfxTextureCache.h"
#include <maya/MDagPath.h>
#include <maya/MDataBlock.h>
#include <maya/MDataHandle.h>
#include <maya/MEventMessage.h>
#include <maya/MFloatVector.h>
#include <maya/MFnMesh.h>
#include <maya/MFnStringArrayData.h>
#include <maya/MFnStringData.h>
#include <maya/MFnTypedAttribute.h>
#include <maya/MGlobal.h>
#include <maya/MHwTextureManager.h>
#include <maya/MPlug.h>
#include <maya/MPoint.h>
#include <maya/MPointArray.h>
#include <maya/MVector.h>
#include <maya/MDGModifier.h>
#include <maya/MFileIO.h>
#include <maya/MNodeMessage.h>
#include <maya/MItDependencyGraph.h>
#include <maya/MViewport2Renderer.h>
#include <maya/MTextureManager.h>
#include <maya/MUIDrawManager.h>
#include <maya/MGLFunctionTable.h>
#include <maya/MDrawContext.h>
#include <maya/MMatrix.h>
#include <maya/MHWGeometry.h>
#undef ENABLE_TRACE_API_CALLS
#ifdef ENABLE_TRACE_API_CALLS
#define TRACE_API_CALLS(x) cerr << "cgfxShader: "<<(x)<<"\n"
#else
#define TRACE_API_CALLS(x)
#endif
#if defined(_SWATCH_RENDERING_SUPPORTED_)
#include <maya/MHardwareRenderer.h>
#include <maya/MGeometryData.h>
#include <maya/MHWShaderSwatchGenerator.h>
#endif
#include <maya/MImage.h>
#include "nv_dds.h"
#ifdef _WIN32
#include <Mmsystem.h>
#else
#include <sys/timeb.h>
#include <string.h>
#include <limits.h>
#define stricmp strcasecmp
#define strnicmp strncasecmp
#endif
#define GLOBJECT_BUFFER_OFFSET(i) ((char *)NULL + (i)) // For GLObject offsets
PFNGLCLIENTACTIVETEXTUREARBPROC glStateCache::glClientActiveTexture = 0;
PFNGLVERTEXATTRIBPOINTERARBPROC glStateCache::glVertexAttribPointer = 0;
PFNGLENABLEVERTEXATTRIBARRAYARBPROC glStateCache::glEnableVertexAttribArray = 0;
PFNGLDISABLEVERTEXATTRIBARRAYARBPROC glStateCache::glDisableVertexAttribArray = 0;
PFNGLVERTEXATTRIB4FARBPROC glStateCache::glVertexAttrib4f = 0;
PFNGLSECONDARYCOLORPOINTEREXTPROC glStateCache::glSecondaryColorPointer = 0;
PFNGLSECONDARYCOLOR3FEXTPROC glStateCache::glSecondaryColor3f = 0;
PFNGLMULTITEXCOORD4FARBPROC glStateCache::glMultiTexCoord4fARB = 0;
int glStateCache::sMaxTextureUnits = 0;
glStateCache::glStateCache()
{
reset();
}
glStateCache glStateCache::gInstance;
void glStateCache::activeTexture( int i)
{
if( i != fActiveTextureUnit)
{
fActiveTextureUnit = i;
if( glStateCache::glClientActiveTexture)
glStateCache::glClientActiveTexture( GL_TEXTURE0_ARB + i );
}
}
void glStateCache::enableVertexAttrib( int i)
{
if( !(fEnabledRegisters & (1 << (glRegister::kVertexAttrib + i))))
{
if( glStateCache::glEnableVertexAttribArray)
glStateCache::glEnableVertexAttribArray( i);
fEnabledRegisters |= (1 << (glRegister::kVertexAttrib + i));
}
fRequiredRegisters |= (1 << (glRegister::kVertexAttrib + i));
}
void glStateCache::flushState()
{
long redundantRegisters = fEnabledRegisters & ~fRequiredRegisters;
if( redundantRegisters & (1 << glRegister::kPosition))
glDisableClientState(GL_VERTEX_ARRAY);
if( redundantRegisters & (1 << glRegister::kNormal))
glDisableClientState(GL_NORMAL_ARRAY);
if( redundantRegisters & (1 << glRegister::kColor))
glDisableClientState(GL_COLOR_ARRAY);
if( redundantRegisters & (1 << glRegister::kSecondaryColor))
glDisableClientState(GL_SECONDARY_COLOR_ARRAY_EXT);
for( int i = glRegister::kTexCoord; i <= glRegister::kLastTexCoord; i++)
{
if( redundantRegisters & (1 << i))
{
activeTexture( i - glRegister::kTexCoord);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
}
for( int i = glRegister::kVertexAttrib; i <= glRegister::kLastVertexAttrib; i++)
{
if( redundantRegisters & (1 << i))
{
if( glStateCache::glDisableVertexAttribArray)
glStateCache::glDisableVertexAttribArray( i - glRegister::kVertexAttrib);
}
}
fEnabledRegisters = fRequiredRegisters;
fRequiredRegisters = 0;
}
#ifdef _WIN32
MTypeId cgfxShaderNode::sId( 4084862000 );
#else
MTypeId cgfxShaderNode::sId( 0xF37A0C30 );
#endif
CGcontext cgfxShaderNode::sCgContext;
cgfxShaderNode::Effect2NodesMap cgfxShaderNode::sEffect2NodesMap;
MObject cgfxShaderNode::sTechnique;
MObject cgfxShaderNode::sAttributeList;
MObject cgfxShaderNode::sVertexAttributeList;
MObject cgfxShaderNode::sVertexAttributeSource;
MObject cgfxShaderNode::sTexCoordSource;
MObject cgfxShaderNode::sColorSource;
MObject cgfxShaderNode::sTexturesByName;
enum ETexCoord
{
etcNull = -1,
etcConstant = -2,
etcNormal = -3,
etcTangent = -4,
etcBinormal = -5,
etcDataSet = -6,
};
cgfxShaderNode::cgfxShaderNode()
: fCurrentTechnique( NULL)
, fVertexAttributes( NULL)
#ifdef TEXTURES_BY_NAME
, fTexturesByName( true )
#else
, fTexturesByName( false )
#endif
, fNormalsPerVertex( 3 )
, fPassStateSetters( NULL )
, fConstructed(false)
, fErrorCount( 0 )
, fErrorLimit( 8 )
, fProfileName( "" )
, fLastShaderFxFileAtVASSet( "" )
, fShaderFxFile()
, fShaderFxFileChanged( false )
, fGeomReqDataVersionId( 0 )
, fUVEditorTexture( NULL )
{
setDataSources( &sa, &sa2 );
}
void
cgfxShaderNode::postConstructor()
{
fConstructed = true;
fCallbackIds.append(
thisObj,
attributeAddedOrRemovedCB,
}
cgfxShaderNode::~cgfxShaderNode()
{
cgfxShaderNode::removeAssociation(this, fEffect);
#ifdef KH_DEBUG
if ( fConstructed )
{
ss += fnNode.name();
}
ss += "\n";
::OutputDebugString( ss.
asChar() );
#endif
if (!fAttrDefList.isNull()) {
fAttrDefList->releaseTextures();
}
fCallbackIds.clear();
if (fUVEditorTexture) {
if (theRenderer) {
if (txtManager) {
}
}
}
delete [] fPassStateSetters;
}
{
if ((plug == outColor) || (plug.
parent() == outColor))
{
return MS::kSuccess;
}
return MS::kUnknownParameter;
}
void* cgfxShaderNode::creator()
{
return new cgfxShaderNode();
}
cgfxShaderNode::initialize()
{
try
{
initializeNodeAttrs();
}
catch ( cgfxShaderCommon::InternalError* e )
{
size_t ee = (size_t)e;
MString es =
"cgfxShaderNode internal error ";
es += (int)ee;
ms = MS::kFailure;
}
catch ( ... )
{
MString es =
"cgfxShaderNode internal error: Unhandled exception in initialize";
ms = MS::kFailure;
}
return ms;
}
void
cgfxShaderNode::initializeNodeAttrs()
{
M_CHECK( stat2 );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
stat = addAttribute(sShader);
M_CHECK( stat );
stringData.
create(&stat2), &stat);
M_CHECK( stat2 );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
stat = addAttribute(sTechnique);
M_CHECK( stat );
stringData.
create(&stat2), &stat);
M_CHECK( stat2 );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
stat = addAttribute(sProfile);
M_CHECK( stat );
stringArrayData.
create(&stat2), &stat);
M_CHECK( stat2 );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
stat = addAttribute(sAttributeList);
M_CHECK( stat );
stringArrayData.
create(&stat2), &stat);
M_CHECK( stat2 );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
stat = addAttribute(sVertexAttributeList);
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
stat = addAttribute( sVertexAttributeSource );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
stat = addAttribute( sTexCoordSource );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
stat = addAttribute( sColorSource );
M_CHECK( stat );
0, &stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
M_CHECK( stat );
stat = addAttribute( sTexturesByName );
M_CHECK( stat );
}
void
cgfxShaderNode::copyInternalData(
MPxNode* pSrc )
{
const cgfxShaderNode& src = *(cgfxShaderNode*)pSrc;
setTexturesByName( src.getTexturesByName() );
setShaderFxFile( src.shaderFxFile() );
setShaderFxFileChanged( true );
setDataSources( &src.getTexCoordSource(), &src.getColorSource() );
fEffect = cgfxRCPtr<const cgfxEffect>();
fCurrentTechnique = NULL;
MString fileName = cgfxFindFile(shaderFxFile());
bool hasFile = (fileName.
asChar() != NULL) && strcmp(fileName.
asChar(),
"");
if ( hasFile )
{
const cgfxRCPtr<const cgfxEffect> effect = cgfxEffect::loadEffect(fileName, cgfxProfile::getProfile(src.getProfile()));
if (effect->isValid())
{
cgfxRCPtr<cgfxAttrDefList> effectList;
cgfxAttrDef::updateNode(effect, this, &dagMod, effectList, attributeList);
#ifndef NDEBUG
#endif
assert(status == MS::kSuccess);
setAttrDefList(effectList);
setAttributeList(attributeList);
setEffect(effect);
}
}
setTechnique( src.getTechnique() );
setProfile( src.getProfile() );
}
bool cgfxShaderNode::setInternalValue(
const MPlug& plug,
const MDataHandle& handle)
{
bool retVal = true;
try
{
#ifdef KH_DEBUG
ss += plug.
partialName(
true,
true,
true,
false,
false,
true );
if (plug == sShader ||
plug == sTechnique)
{
ss += " \"";
ss += "\"";
}
ss += "\n";
::OutputDebugString( ss.
asChar() );
#endif
if (plug == sShader)
{
}
else if (plug == sTechnique)
{
}
else if (plug == sProfile)
{
}
else if (plug == sAttributeList)
{
MObject saData = nonConstHandle.data();
setAttributeList(fnSaData.array());
}
else if (plug == sVertexAttributeList)
{
MObject saData = nonConstHandle.data();
cgfxRCPtr<cgfxVertexAttribute> attributes;
cgfxRCPtr<cgfxVertexAttribute>* nextAttribute = &attributes;
int numAttributes = attributeList.
length() / 4;
for( int i = 0; i < numAttributes; i++)
{
cgfxRCPtr<cgfxVertexAttribute> attribute = cgfxRCPtr<cgfxVertexAttribute>(new cgfxVertexAttribute());
attribute->fName = attributeList[ i * 4 + 0];
attribute->fType = attributeList[ i * 4 + 1];
attribute->fUIName = attributeList[ i * 4 + 2];
attribute->fSemantic = attributeList[ i * 4 + 3];
*nextAttribute = attribute;
nextAttribute = &attribute->fNext;
}
setVertexAttributes( attributes );
}
else if ( plug == sVertexAttributeSource )
{
MObject saData = nonConstHandle.data();
setVertexAttributeSource( values);
}
else if ( plug == sTexCoordSource )
{
MObject saData = nonConstHandle.data();
setDataSources( &values, NULL );
}
else if ( plug == sColorSource )
{
MObject saData = nonConstHandle.data();
setDataSources( NULL, &values );
}
else if ( plug == sTexturesByName )
{
}
else
{
}
}
catch ( cgfxShaderCommon::InternalError* e )
{
reportInternalError( __FILE__, (size_t)e );
retVal = false;
}
catch ( ... )
{
reportInternalError( __FILE__, __LINE__ );
retVal = false;
}
return retVal;
}
{
bool retVal = true;
try
{
#ifdef KH_DEBUG
ss += plug.
partialName(
true,
true,
true,
false,
false,
true );
if ( plug == sShader )
ss += " \"" + fShaderFxFile + "\"";
else if (plug == sTechnique)
ss += " \"" + fTechnique + "\"";
ss += "\n";
::OutputDebugString( ss.
asChar() );
#endif
if (plug == sShader)
{
handle.
set(fShaderFxFile);
}
else if (plug == sTechnique)
{
}
else if (plug == sProfile)
{
handle.
set(fProfileName);
}
else if (plug == sAttributeList)
{
handle.
set(saData.
create(fAttributeListArray));
}
else if (plug == sVertexAttributeList)
{
cgfxRCPtr<cgfxVertexAttribute> attribute = fVertexAttributes;
while( attribute.isNull() == false)
{
attributeList.
append( attribute->fName);
attributeList.
append( attribute->fType);
attributeList.
append( attribute->fUIName);
attributeList.
append( attribute->fSemantic);
attribute = attribute->fNext;
}
}
else if ( plug == sVertexAttributeSource )
{
cgfxRCPtr<cgfxVertexAttribute> attribute = fVertexAttributes;
while( attribute.isNull() == false)
{
attributeSources.
append( attribute->fSourceName);
attribute = attribute->fNext;
}
handle.
set( saData.
create( attributeSources ) );
}
else if ( plug == sTexCoordSource )
{
handle.
set( saData.
create( fTexCoordSource ) );
}
else if ( plug == sColorSource )
{
}
else if (plug == sTexturesByName)
{
handle.
set(fTexturesByName);
}
else
{
}
}
catch ( cgfxShaderCommon::InternalError* e )
{
reportInternalError( __FILE__, (size_t)e );
retVal = false;
}
catch ( ... )
{
reportInternalError( __FILE__, __LINE__ );
retVal = false;
}
return retVal;
}
static void checkGlErrors(const char* msg)
{
#if defined(CGFX_DEBUG)
#define MYERR(n) case n: OutputDebugStrings(" ", #n); break
GLenum err;
bool errors = false;
while ((err = glGetError()) != GL_NO_ERROR)
{
if (!errors)
{
OutputDebugStrings("OpenGl errors: ", msg);
}
errors = true;
switch (err)
{
MYERR(GL_INVALID_ENUM);
MYERR(GL_INVALID_VALUE);
MYERR(GL_INVALID_OPERATION);
MYERR(GL_STACK_OVERFLOW);
MYERR(GL_STACK_UNDERFLOW);
MYERR(GL_OUT_OF_MEMORY);
default:
{
char tmp[32];
sprintf(tmp, "%d", err);
OutputDebugStrings(" GL Error #", tmp);
}
}
}
#undef MYERR
#endif
}
{
cgfxAttrDef* aDef = (cgfxAttrDef*)aDefVoid;
assert(status == MS::kSuccess);
if (!status) {
return;
}
if (plugAttr.name() == "fileTextureName") {
MPlug outPlug(textureNode.findPlug(
"outColor",
true));
MPlug oplug(iter.thisPlug());
if (oplug.attribute() == aDef->fAttr) {
aDef->releaseCallback();
aDef->fTexture->markAsStaled();
}
}
}
}
#if defined(_SWATCH_RENDERING_SUPPORTED_)
{
if( sCgContext == 0 ) return status;
_OPENMAYA_DEPRECATION_PUSH_AND_DISABLE_WARNING
_OPENMAYA_POP_WARNING
if (pRenderer)
{
_OPENMAYA_DEPRECATION_PUSH_AND_DISABLE_WARNING
const MString& backEndStr = pRenderer->backEndString();
_OPENMAYA_POP_WARNING
unsigned int* pIndexing = 0;
unsigned int numberOfData = 0;
unsigned int indexCount = 0;
_OPENMAYA_DEPRECATION_PUSH_AND_DISABLE_WARNING
pRenderer->referenceDefaultGeometry( gshape, numberOfData, pIndexing, indexCount );
_OPENMAYA_POP_WARNING
if( !pGeomData )
{
}
unsigned int width, height;
unsigned int origWidth = width;
unsigned int origHeight = height;
MStatus status2 = pRenderer->makeSwatchContextCurrent( backEndStr, width, height );
if( status2 != MS::kSuccess )
{
_OPENMAYA_DEPRECATION_PUSH_AND_DISABLE_WARNING
pRenderer->dereferenceGeometry( pGeomData, numberOfData );
_OPENMAYA_POP_WARNING
return status2;
}
glPushAttrib ( GL_ALL_ATTRIB_BITS );
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
{
float light_pos[4];
pRenderer->getSwatchLightDirection( light_pos[0], light_pos[1], light_pos[2], light_pos[3] );
}
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
double l, r, b, t, n, f;
pRenderer->getSwatchPerspectiveCameraSetting( l, r, b, t, n, f );
glFrustum( l, r, b, t, n, f );
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
float x, y, z, w;
pRenderer->getSwatchPerspectiveCameraTranslation( x, y, z, w );
glTranslatef( x, y, z );
}
float r, g, b, a;
glClearColor( r, g, b, a );
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glShadeModel(GL_SMOOTH);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glBind( dummyPath );
float *vertexData = (float *)( pGeomData[0].data() );
float *normalData = (float *)( pGeomData[1].data() );
float *uvData = (float *)( pGeomData[2].data() );
float *tangentData = (float *)( pGeomData[3].data() );
float *binormalData = (float *)( pGeomData[4].data() );
int uvCount = fUVSets.length();
float ** texCoordArrays = uvCount ? new float * [ uvCount] : NULL;
for( int uv = 0; uv < uvCount; uv++)
{
texCoordArrays[ uv] = uvData;
}
int normalCount = uvCount > 0 ? uvCount : 1;
float ** normalArrays = new float * [ fNormalsPerVertex * normalCount];
for( int n = 0; n < normalCount; n++)
{
if( fNormalsPerVertex > 0)
{
normalArrays[ n * fNormalsPerVertex + 0] = normalData;
if( fNormalsPerVertex > 1)
{
normalArrays[ n * fNormalsPerVertex + 1] = tangentData;
if( fNormalsPerVertex > 2)
{
normalArrays[ n * fNormalsPerVertex + 2] = binormalData;
}
}
}
}
glGeometry( dummyPath,
GL_TRIANGLES,
false,
indexCount,
pIndexing,
pGeomData[0].elementCount(),
NULL,
vertexData,
fNormalsPerVertex,
(const float **) normalArrays,
0,
NULL,
uvCount,
(const float **) texCoordArrays);
glUnbind( dummyPath );
if( normalArrays) delete[] normalArrays;
if( texCoordArrays) delete[] texCoordArrays;
pRenderer->readSwatchContextPixels( backEndStr, outImage );
if (width != origWidth || height != origHeight)
{
}
else
{
}
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glPopAttrib();
_OPENMAYA_DEPRECATION_PUSH_AND_DISABLE_WARNING
pRenderer->dereferenceGeometry( pGeomData, numberOfData );
_OPENMAYA_POP_WARNING
}
return status;
}
#endif
bool cgfxShaderNode::supportsBatching() const
{
return true;
}
bool cgfxShaderNode::invertTexCoords() const
{
if (cgfxProfile::getTexCoordOrientation() == cgfxProfile::TEXCOORD_OPENGL)
return false;
else
return true;
}
bool cgfxShaderNode::createEffect()
{
bool rc = false;
if (shaderFxFileChanged())
{
MString fileName = cgfxFindFile(shaderFxFile());
if(fileName.
asChar() != NULL && strcmp(fileName.
asChar(),
""))
{
const cgfxRCPtr<const cgfxEffect> effect = cgfxEffect::loadEffect(fileName, cgfxProfile::getProfile(fProfileName));
if (effect->isValid())
{
cgfxRCPtr<cgfxAttrDefList> effectList;
cgfxAttrDef::updateNode(effect, this, &dagMod, effectList, attributeList);
#ifndef NDEBUG
#endif
assert(status == MS::kSuccess);
setAttrDefList(effectList);
setAttributeList(attributeList);
setEffect(effect);
setTechnique(fTechnique);
rc = true;
}
}
setShaderFxFileChanged( false );
}
return rc;
}
{
glStateCache::instance().reset();
glPushAttrib(GL_ALL_ATTRIB_BITS);
glPushClientAttrib(GL_CLIENT_ALL_ATTRIB_BITS);
#ifdef KH_DEBUG
if (fConstructed)
ss += name();
ss += " ";
ss += request.multiPath().fullPathName();
ss += "\n";
::OutputDebugString( ss.
asChar() );
#endif
try
{
if ( glStateCache::sMaxTextureUnits <= 0 )
{
#ifdef _WIN32
#define RESOLVE_GL_EXTENSION( fn, ext) wglGetProcAddress( #fn #ext)
#elif defined LINUX
#define RESOLVE_GL_EXTENSION( fn, ext) &fn ## ext
#else
#define RESOLVE_GL_EXTENSION( fn, ext) &fn
#endif
glStateCache::glClientActiveTexture = (PFNGLCLIENTACTIVETEXTUREARBPROC) RESOLVE_GL_EXTENSION( glClientActiveTexture, ARB);
glStateCache::glVertexAttribPointer = (PFNGLVERTEXATTRIBPOINTERARBPROC) RESOLVE_GL_EXTENSION( glVertexAttribPointer, ARB);
glStateCache::glEnableVertexAttribArray = (PFNGLENABLEVERTEXATTRIBARRAYARBPROC) RESOLVE_GL_EXTENSION( glEnableVertexAttribArray, ARB);
glStateCache::glDisableVertexAttribArray = (PFNGLDISABLEVERTEXATTRIBARRAYARBPROC) RESOLVE_GL_EXTENSION( glDisableVertexAttribArray, ARB);
glStateCache::glVertexAttrib4f = (PFNGLVERTEXATTRIB4FARBPROC) RESOLVE_GL_EXTENSION( glVertexAttrib4f, ARB);
glStateCache::glSecondaryColorPointer = (PFNGLSECONDARYCOLORPOINTEREXTPROC) RESOLVE_GL_EXTENSION( glSecondaryColorPointer, EXT);
glStateCache::glSecondaryColor3f = (PFNGLSECONDARYCOLOR3FEXTPROC) RESOLVE_GL_EXTENSION( glSecondaryColor3f, EXT);
glStateCache::glMultiTexCoord4fARB = (PFNGLMULTITEXCOORD4FARBPROC) RESOLVE_GL_EXTENSION( glMultiTexCoord4f, ARB);
GLint tval;
glGetIntegerv( GL_MAX_TEXTURE_COORDS_ARB, &tval );
GLint mic = 0;
glGetIntegerv( GL_MAX_TEXTURE_IMAGE_UNITS_ARB, &mic );
if (mic < tval)
tval = mic;
glStateCache::sMaxTextureUnits = tval;
if (!glStateCache::glClientActiveTexture || glStateCache::sMaxTextureUnits < 1)
glStateCache::sMaxTextureUnits = 1;
else if (glStateCache::sMaxTextureUnits > CGFXSHADERNODE_GL_TEXTURE_MAX)
glStateCache::sMaxTextureUnits = CGFXSHADERNODE_GL_TEXTURE_MAX;
}
if(fCurrentTechnique && fCurrentTechnique->isValid())
{
bindAttrValues();
if (fCurrentTechnique->hasBlending())
glPushAttrib( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glGetBooleanv( GL_DEPTH_TEST, &fDepthEnableState);
glGetIntegerv( GL_DEPTH_FUNC, &fDepthFunc);
glGetIntegerv( GL_BLEND_SRC, &fBlendSourceFactor);
glGetIntegerv( GL_BLEND_DST, &fBlendDestFactor);
glDepthFunc(GL_LEQUAL);
}
else
{
glPushAttrib( GL_LIGHTING);
static float diffuse_color[4] = {1.0, 0.5, 0.5, 1.0};
static float specular_color[4] = {1.0, 1.0, 1.0, 1.0};
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
glColor4fv(diffuse_color);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular_color);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 100.0);
}
checkGlErrors("cgfxShaderNode::glBind");
}
catch ( cgfxShaderCommon::InternalError* e )
{
reportInternalError( __FILE__, (size_t)e );
stat = MS::kFailure;
}
catch ( ... )
{
reportInternalError( __FILE__, __LINE__ );
stat = MS::kFailure;
}
return stat;
}
void cgfxShaderNode::bindAttrValues()
{
if (fEffect.isNull() || !fEffect->isValid() || !fTechnique.length())
return;
for ( cgfxAttrDefList::iterator it( fAttrDefList ); it; ++it )
{
cgfxAttrDef* aDef = *it;
try
{
switch (aDef->fType)
{
case cgfxAttrDef::kAttrTypeBool:
{
bool tmp;
aDef->getValue(oNode, tmp);
cgSetParameter1i(aDef->fParameterHandle, tmp);
break;
}
case cgfxAttrDef::kAttrTypeInt:
{
int tmp;
aDef->getValue(oNode, tmp);
cgSetParameter1i(aDef->fParameterHandle, tmp);
break;
}
case cgfxAttrDef::kAttrTypeFloat:
{
float tmp;
aDef->getValue(oNode, tmp);
cgSetParameter1f(aDef->fParameterHandle, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeString:
{
aDef->getValue(oNode, tmp);
cgSetStringParameterValue(aDef->fParameterHandle, tmp.
asChar());
break;
}
case cgfxAttrDef::kAttrTypeVector2:
{
float tmp[2];
aDef->getValue(oNode, tmp[0], tmp[1]);
cgSetParameter2fv(aDef->fParameterHandle, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeVector3:
case cgfxAttrDef::kAttrTypeColor3:
{
float tmp[3];
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2]);
cgSetParameter3fv(aDef->fParameterHandle, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeVector4:
case cgfxAttrDef::kAttrTypeColor4:
{
float tmp[4];
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2], tmp[3]);
cgSetParameter4fv(aDef->fParameterHandle, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeWorldDir:
case cgfxAttrDef::kAttrTypeWorldPos:
{
float tmp[4];
if (aDef->fSize == 3)
{
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2]);
tmp[3] = 1.0;
}
else
{
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2], tmp[3]);
}
cgSetParameterValuefr(aDef->fParameterHandle, aDef->fSize, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeMatrix:
{
float tmp2[4][4];
aDef->getValue(oNode, tmp);
if (aDef->fInvertMatrix)
{
}
if (!aDef->fTransposeMatrix)
{
}
cgSetMatrixParameterfr(aDef->fParameterHandle, &tmp2[0][0]);
break;
}
case cgfxAttrDef::kAttrTypeColor1DTexture:
case cgfxAttrDef::kAttrTypeColor2DTexture:
case cgfxAttrDef::kAttrTypeColor3DTexture:
case cgfxAttrDef::kAttrTypeColor2DRectTexture:
case cgfxAttrDef::kAttrTypeNormalTexture:
case cgfxAttrDef::kAttrTypeBumpTexture:
case cgfxAttrDef::kAttrTypeCubeTexture:
case cgfxAttrDef::kAttrTypeEnvTexture:
case cgfxAttrDef::kAttrTypeNormalizationTexture:
{
if( fTexturesByName)
{
aDef->getValue(oNode, texFileName);
}
else
{
aDef->getSource(oNode, srcPlug);
{
MPlug filenamePlug = dgFn.findPlug(
"fileTextureName",
true, &rc);
{
textureNode = filenamePlug.
node(&rc);
}
{
aDef->releaseTexture();
aDef->fTextureMonitor =
}
}
}
if (aDef->fTexture.isNull() || texFileName != aDef->fStringDef)
{
aDef->fStringDef = texFileName;
aDef->fTexture = cgfxTextureCache::instance().getTexture(
texFileName, textureNode, fShaderFxFile,
aDef->fName, aDef->fType);
if (!aDef->fTexture->isValid() && texFileName.
length() > 0) {
sMsg += fnNode.name();
sMsg += " : failed to load texture \"";
sMsg += texFileName;
sMsg += "\".";
}
}
checkGlErrors("After loading texture");
cgGLSetupSampler(aDef->fParameterHandle, aDef->fTexture->getTextureId());
break;
}
#ifdef _WIN32
case cgfxAttrDef::kAttrTypeTime:
{
int ival = timeGetTime() & 0xffffff;
float val = (float)ival * 0.001f;
cgSetParameter1f(aDef->fParameterHandle, val);
break;
}
#endif
case cgfxAttrDef::kAttrTypeOther:
case cgfxAttrDef::kAttrTypeUnknown:
break;
case cgfxAttrDef::kAttrTypeObjectDir:
case cgfxAttrDef::kAttrTypeViewDir:
case cgfxAttrDef::kAttrTypeProjectionDir:
case cgfxAttrDef::kAttrTypeScreenDir:
case cgfxAttrDef::kAttrTypeObjectPos:
case cgfxAttrDef::kAttrTypeViewPos:
case cgfxAttrDef::kAttrTypeProjectionPos:
case cgfxAttrDef::kAttrTypeScreenPos:
case cgfxAttrDef::kAttrTypeWorldMatrix:
case cgfxAttrDef::kAttrTypeViewMatrix:
case cgfxAttrDef::kAttrTypeProjectionMatrix:
case cgfxAttrDef::kAttrTypeWorldViewMatrix:
case cgfxAttrDef::kAttrTypeWorldViewProjectionMatrix:
break;
default:
M_CHECK( false );
}
}
catch ( cgfxShaderCommon::InternalError* e )
{
if ( ++fErrorCount <= fErrorLimit )
{
size_t ee = (size_t)e;
MString sMsg =
"cgfxShader warning ";
sMsg += (int)ee;
sMsg += ": ";
sMsg += fnNode.name();
sMsg += " internal error while setting parameter \"";
sMsg += aDef->fName;
sMsg += "\" of effect \"";
sMsg += fShaderFxFile;
sMsg += "\" for shape ";
sMsg += currentPath().partialPathName();
}
}
}
}
void
cgfxShaderNode::bindViewAttrValues(
const MDagPath& shapePath)
{
if (fEffect.isNull() || !fEffect->isValid() || !fTechnique.length())
return;
MMatrix wMatrix, vMatrix, pMatrix, sMatrix;
MMatrix wvMatrix, wvpMatrix, wvpsMatrix;
{
float tmp[4][4];
else
glGetFloatv(GL_MODELVIEW_MATRIX, &tmp[0][0]);
vMatrix = wMatrix.
inverse() * wvMatrix;
glGetFloatv(GL_PROJECTION_MATRIX, &tmp[0][0]);
wvpMatrix = wvMatrix * pMatrix;
float vpt[4];
float depth[2];
glGetFloatv(GL_VIEWPORT, vpt);
glGetFloatv(GL_DEPTH_RANGE, depth);
float x0, y0, z0, w, h, d;
x0 = vpt[0];
y0 = vpt[1];
z0 = depth[0];
w = vpt[2];
h = vpt[3];
d = depth[1] - z0;
double* s = &sMatrix.
matrix[0][0];
s[ 0] = w/2; s[ 1] = 0.0; s[ 2] = 0.0; s[ 3] = 0.0;
s[ 4] = 0.0; s[ 5] = h/2; s[ 6] = 0.0; s[ 7] = 0.0;
s[ 8] = 0.0; s[ 9] = 0.0; s[10] = d/2; s[11] = 0.0;
s[12] = x0+w/2; s[13] = y0+h/2; s[14] = z0+d/2; s[15] = 1.0;
wvpsMatrix = wvpMatrix * sMatrix;
}
for ( cgfxAttrDefList::iterator it( fAttrDefList ); it; ++it )
{
cgfxAttrDef* aDef = *it;
try
{
switch (aDef->fType)
{
case cgfxAttrDef::kAttrTypeObjectDir:
case cgfxAttrDef::kAttrTypeViewDir:
case cgfxAttrDef::kAttrTypeProjectionDir:
case cgfxAttrDef::kAttrTypeScreenDir:
case cgfxAttrDef::kAttrTypeObjectPos:
case cgfxAttrDef::kAttrTypeViewPos:
case cgfxAttrDef::kAttrTypeProjectionPos:
case cgfxAttrDef::kAttrTypeScreenPos:
{
float tmp[4];
if (aDef->fSize == 3)
{
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2]);
tmp[3] = 1.0;
}
else
{
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2], tmp[3]);
}
MVector vec(tmp[0], tmp[1], tmp[2]);
int space = aDef->fType - cgfxAttrDef::kAttrTypeFirstPos;
if (space < 0)
{
space = aDef->fType - cgfxAttrDef::kAttrTypeFirstDir;
}
switch (space)
{
case 0: break;
case 1: mat = wMatrix; break;
case 2: mat = wvMatrix; break;
case 3: mat = wvpMatrix; break;
case 4: mat = wvpsMatrix; break;
}
int base = cgfxAttrDef::kAttrTypeFirstPos;
if (aDef->fType <= cgfxAttrDef::kAttrTypeLastDir)
base = cgfxAttrDef::kAttrTypeFirstDir;
if (base == cgfxAttrDef::kAttrTypeFirstPos)
{
MPoint point(tmp[0], tmp[1], tmp[2], tmp[3]);
tmp[0] = (float)point.x;
tmp[1] = (float)point.y;
tmp[2] = (float)point.z;
tmp[3] = (float)point.w;
}
else
{
MVector vec(tmp[0], tmp[1], tmp[2]);
tmp[0] = (float)vec.x;
tmp[1] = (float)vec.y;
tmp[2] = (float)vec.z;
tmp[3] = 1.F;
}
cgSetParameterValuefc(aDef->fParameterHandle, aDef->fSize, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeWorldMatrix:
case cgfxAttrDef::kAttrTypeViewMatrix:
case cgfxAttrDef::kAttrTypeProjectionMatrix:
case cgfxAttrDef::kAttrTypeWorldViewMatrix:
case cgfxAttrDef::kAttrTypeWorldViewProjectionMatrix:
{
switch (aDef->fType)
{
case cgfxAttrDef::kAttrTypeWorldMatrix:
mat = wMatrix; break;
case cgfxAttrDef::kAttrTypeViewMatrix:
mat = vMatrix; break;
case cgfxAttrDef::kAttrTypeProjectionMatrix:
mat = pMatrix; break;
case cgfxAttrDef::kAttrTypeWorldViewMatrix:
mat = wvMatrix; break;
case cgfxAttrDef::kAttrTypeWorldViewProjectionMatrix:
mat = wvpMatrix; break;
default:
break;
}
if (aDef->fInvertMatrix)
{
}
if (!aDef->fTransposeMatrix)
{
}
float tmp[4][4];
cgSetMatrixParameterfr(aDef->fParameterHandle, &tmp[0][0]);
break;
}
case cgfxAttrDef::kAttrTypeHardwareFogEnabled:
case cgfxAttrDef::kAttrTypeHardwareFogMode:
case cgfxAttrDef::kAttrTypeHardwareFogStart:
case cgfxAttrDef::kAttrTypeHardwareFogEnd:
case cgfxAttrDef::kAttrTypeHardwareFogDensity:
case cgfxAttrDef::kAttrTypeHardwareFogColor:
break;
default:
break;
}
}
catch ( cgfxShaderCommon::InternalError* e )
{
if ( ++fErrorCount <= fErrorLimit )
{
size_t ee = (size_t)e;
MString sMsg =
"cgfxShader warning ";
sMsg += (int)ee;
sMsg += ": ";
sMsg += fnNode.name();
sMsg += " internal error while setting parameter \"";
sMsg += aDef->fName;
sMsg += "\" of effect \"";
sMsg += fShaderFxFile;
sMsg += "\" for shape ";
else
sMsg += "SWATCH GEOMETRY";
}
}
}
}
{
if (fCurrentTechnique && fCurrentTechnique->isValid())
{
if( fDepthEnableState)
glEnable( GL_DEPTH_TEST);
else
glDisable( GL_DEPTH_TEST);
glDepthFunc( fDepthFunc);
glBlendFunc( fBlendSourceFactor, fBlendDestFactor);
if (fCurrentTechnique->hasBlending())
glPopAttrib();
}
else
{
glPopAttrib();
}
glPopClientAttrib();
glPopAttrib();
glStateCache::instance().disableAll();
glStateCache::instance().activeTexture( 0);
#ifdef KH_DEBUG
if (fConstructed )
ss += name();
ss += "\n";
::OutputDebugString( ss.
asChar() );
#endif
return MS::kSuccess;
}
int prim,
unsigned int writable,
int indexCount,
const unsigned int * indexArray,
int vertexCount,
const int * vertexIDs,
const float * vertexArray,
int normalCount,
const float ** normalArrays,
int colorCount,
const float ** colorArrays,
int texCoordCount,
const float ** texCoordArrays)
{
#ifdef KH_DEBUG
if (fConstructed )
ss += name();
ss += " ";
ss += indexCount;
ss += "i ";
ss += vertexCount;
ss += "v ";
ss += normalCount;
ss += "n ";
ss += colorCount;
ss += "c ";
ss += texCoordCount;
ss += "t ";
ss += "\n";
::OutputDebugString( ss.
asChar() );
#endif
try
{
if (fCurrentTechnique && fCurrentTechnique->isValid())
{
cgfxPassStateSetter::registerCgStateCallBacks(
cgfxPassStateSetter::kDefaultViewport);
bindViewAttrValues(shapePath);
if( dirtyMask() != kDirtyNone)
fBoundDataCache.flush(shapePath);
const cgfxPass* pass = fCurrentTechnique->getFirstPass();
while( pass)
{
pass->bind(shapePath, &fBoundDataCache,
vertexCount, vertexArray,
fNormalsPerVertex, normalCount, normalArrays,
colorCount, colorArrays,
texCoordCount, texCoordArrays);
glStateCache::instance().flushState();
pass->setCgState();
glDrawElements(prim, indexCount, GL_UNSIGNED_INT, indexArray);
pass->resetCgState();
pass = pass->getNext();
}
}
else
{
glStateCache::instance().enablePosition();
glVertexPointer(3, GL_FLOAT, 0, vertexArray);
if ( normalCount > 0 && normalArrays[ 0 ] )
{
glStateCache::instance().enableNormal();
glNormalPointer(GL_FLOAT, 0, normalArrays[0]);
}
else
{
glStateCache::instance().disableNormal();
glNormal3f(0.0, 0.0, 1.0);
}
glStateCache::instance().flushState();
glDrawElements(prim, indexCount, GL_UNSIGNED_INT, indexArray);
}
checkGlErrors("After effects End");
}
catch ( cgfxShaderCommon::InternalError* e )
{
reportInternalError( __FILE__, (size_t)e );
stat = MS::kFailure;
}
catch ( ... )
{
reportInternalError( __FILE__, __LINE__ );
stat = MS::kFailure;
}
return stat;
}
int
{
names = fUVSets;
}
#if MAYA_API_VERSION >= 700
int
{
names = fColorSets;
}
#else
int cgfxShaderNode::colorsPerVertex()
{
fColorType.setLength(1);
fColorIndex.setLength(1);
fColorType[0] = 0;
fColorIndex[0] = 0;
return 1;
}
#endif
int cgfxShaderNode::normalsPerVertex()
{
#ifdef KH_DEBUG
if (fConstructed )
ss += name();
ss += " ";
ss += fNormalsPerVertex;
ss += "\n";
::OutputDebugString( ss.
asChar() );
#endif
if (fEffect.isNull() || !fEffect->isValid()) {
#ifdef _WIN32
::OutputDebugString( "CGFX: fEffect was NULL\n");
#endif
createEffect();
}
return fNormalsPerVertex;
}
cgfxShaderNode::getAvailableImages(
const MString& uvSetName,
{
cgfxRCPtr<cgfxVertexAttribute> attr = fVertexAttributes;
while( attr.isNull() == false )
{
MString source = attr->fSourceName;
source.
split(
':', sourceArray );
if( sourceArray.
length() == 2 &&
sourceArray[0].toLowerCase() == "uv" &&
sourceArray[1] == uvSetName )
{
varNames.
append( attr->fName );
}
attr = attr->fNext;
}
const cgfxRCPtr<cgfxAttrDefList>& nodeList = attrDefList();
if( nodeList.isNull() )
{
return MS::kNotImplemented;
}
unsigned int nVars = varNames.
length();
for( unsigned int i = 0; i < nVars; i++ )
{
cgfxAttrDefList::iterator nmIt;
for (nmIt = nodeList->begin(); nmIt; ++nmIt)
{
cgfxAttrDef* adef = (*nmIt);
if( adef->fType == cgfxAttrDef::kAttrTypeColor2DTexture &&
adef->fTextureUVLink == varNames[i] )
{
imageNames.
append( adef->fName );
}
}
}
if( imageNames.
length() == 0 )
{
cgfxAttrDefList::iterator nmIt;
for (nmIt = nodeList->begin(); nmIt; ++nmIt)
{
cgfxAttrDef* adef = (*nmIt);
if( adef->fType == cgfxAttrDef::kAttrTypeColor2DTexture )
{
imageNames.
append( adef->fName );
}
}
}
}
cgfxShaderNode::renderImage(
const MString& imageName,
floatRegion region,
int& imageWidth,
int& imageHeight)
{
const cgfxRCPtr<cgfxAttrDefList>& nodeList = attrDefList();
cgfxAttrDef* texDef = NULL;
cgfxAttrDefList::iterator nmIt;
for (nmIt = nodeList->begin(); nmIt; ++nmIt)
{
cgfxAttrDef* adef = (*nmIt);
if( adef->fType >= cgfxAttrDef::kAttrTypeFirstTexture &&
adef->fType <= cgfxAttrDef::kAttrTypeLastTexture &&
adef->fName == imageName )
{
texDef = adef;
break;
}
}
if( !texDef )
{
}
if( texDef->fType != cgfxAttrDef::kAttrTypeColor2DTexture )
{
}
glPushAttrib( GL_ALL_ATTRIB_BITS );
glPushClientAttrib( GL_CLIENT_VERTEX_ARRAY_BIT);
texDef->getSource( thisNode, texPlug );
{
glPopAttrib();
glPopClientAttrib();
sMsg += fnNode.name();
sMsg += " : failed to load texture \"";
sMsg += imageName;
sMsg += "\".";
}
GLint width = 0;
GLint height = 0;
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &width);
glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &height);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBegin( GL_QUADS );
glTexCoord2f(region[0][0], region[0][1]);
glVertex2f(region[0][0], region[0][1]);
glTexCoord2f(region[0][0], region[1][1]);
glVertex2f(region[0][0], region[1][1]);
glTexCoord2f(region[1][0], region[1][1]);
glVertex2f(region[1][0], region[1][1]);
glTexCoord2f(region[1][0], region[0][1]);
glVertex2f(region[1][0], region[0][1]);
glEnd();
glPopAttrib();
glPopClientAttrib();
imageWidth = (int) width;
imageHeight = (int) height;
}
floatRegion region,
int& imageWidth,
int& imageHeight)
{
const cgfxRCPtr<cgfxAttrDefList>& nodeList = attrDefList();
cgfxAttrDef* texDef = NULL;
cgfxAttrDefList::iterator nmIt;
for (nmIt = nodeList->begin(); nmIt; ++nmIt)
{
cgfxAttrDef* adef = (*nmIt);
if( adef->fType >= cgfxAttrDef::kAttrTypeFirstTexture &&
adef->fType <= cgfxAttrDef::kAttrTypeLastTexture &&
adef->fName == imageName )
{
texDef = adef;
break;
}
}
if( !texDef )
{
}
if( texDef->fType != cgfxAttrDef::kAttrTypeColor2DTexture )
{
}
{
texDef->getSource( thisNode, texPlug );
MPlug filenamePlug = dgFn.findPlug(
"fileTextureName",
true, &rc);
}
}
if(textureFileName.
length() == 0)
if(theRenderer == NULL)
if(txtManager == NULL)
int mipmapLevels = 1;
if(texture == NULL)
if(fUVEditorTexture) {
}
fUVEditorTexture = texture;
if(region[0][0] == 0 && region[0][1] == 0 && region[1][0] == 0 && region[1][1] == 0)
positions.
append(region[0][0], region[0][1]);
positions.
append(region[1][0], region[0][1]);
positions.
append(region[1][0], region[1][1]);
positions.
append(region[0][0], region[0][1]);
positions.
append(region[1][0], region[1][1]);
positions.
append(region[0][0], region[1][1]);
uiDrawManager.
setColor( parameters.
baseColor );
}
void
cgfxShaderNode::setAttrDefList( const cgfxRCPtr<cgfxAttrDefList>& list )
{
if (!fAttrDefList.isNull()) {
cgfxAttrDef::purgeMObjectCache( fAttrDefList );
}
if (!list.isNull()) {
cgfxAttrDef::validateMObjectCache( thisMObject(), list );
}
fAttrDefList = list;
}
void cgfxShaderNode::getAttributeList(
MStringArray& attrList)
const
{
int len = fAttributeListArray.
length();
for (int i = 0; i < len; ++i)
{
tmp = fAttributeListArray[i];
}
}
void cgfxShaderNode::setAttributeList(
const MStringArray& attrList)
{
fAttributeListArray.clear();
for (int i = 0; i < len; ++i)
{
tmp = attrList[i];
fAttributeListArray.
append(tmp);
}
}
void
cgfxShaderNode::setVertexAttributes( cgfxRCPtr<cgfxVertexAttribute> attributeList)
{
if( fTexCoordSource.length())
{
int length = fTexCoordSource.length();
for( int i = 0; i < length; i++)
{
if( i)
semantic += i;
else
semantic += "0";
MString source( fTexCoordSource[ i]);
if( source.
index(
':') < 0)
source = "uv:" + source;
cgfxRCPtr<cgfxVertexAttribute> newAttribute = attributeList;
while( newAttribute.isNull() == false)
{
if( newAttribute->fSemantic == semantic ||
(i == 6 && (newAttribute->fSemantic == "TANGENT" || newAttribute->fSemantic == "TANGENT0")) ||
(i == 7 && (newAttribute->fSemantic == "BINORMAL" || newAttribute->fSemantic == "BINORMAL0")))
newAttribute->fSourceName = source;
newAttribute = newAttribute->fNext;
}
}
}
if( fColorSource.length())
{
int length = fColorSource.length();
for( int i = 0; i < length; i++)
{
if( i)
semantic += i;
else
semantic += "0";
if( source.
index(
':') < 0)
source = "color:" + source;
cgfxRCPtr<cgfxVertexAttribute> newAttribute = attributeList;
while( newAttribute.isNull() == false)
{
if( newAttribute->fSemantic == semantic)
newAttribute->fSourceName = source;
newAttribute = newAttribute->fNext;
}
}
}
if (fLastShaderFxFileAtVASSet == fShaderFxFile)
{
cgfxRCPtr<cgfxVertexAttribute> oldAttribute = fVertexAttributes;
while (oldAttribute.isNull() == false)
{
cgfxRCPtr<cgfxVertexAttribute> newAttribute = attributeList;
while (newAttribute.isNull() == false)
{
if (newAttribute->fSourceName.length() == 0 &&
newAttribute->fName == oldAttribute->fName &&
newAttribute->fSemantic == oldAttribute->fSemantic &&
newAttribute->fType == oldAttribute->fType)
{
newAttribute->fSourceName = oldAttribute->fSourceName;
break;
}
newAttribute = newAttribute->fNext;
}
oldAttribute = oldAttribute->fNext;
}
}
fVertexAttributes = attributeList;
analyseVertexAttributes();
}
void
cgfxShaderNode::setVertexAttributeSource(
const MStringArray& sources)
{
fBoundDataCache.flush();
int i = 0;
int numSources = sources.
length();
cgfxRCPtr<cgfxVertexAttribute> attribute = fVertexAttributes;
while( attribute.isNull() == false)
{
attribute->fSourceName = ( i < numSources) ? sources[ i++] : "";
attribute = attribute->fNext;
}
fLastShaderFxFileAtVASSet = fShaderFxFile;
analyseVertexAttributes();
}
{
for( int i = 0; i < length; i++)
if( list[ i] == value)
return i;
return length;
}
void
cgfxShaderNode::analyseVertexAttributes()
{
++fGeomReqDataVersionId;
fColorSets.clear();
fNormalsPerVertex = 0;
cgfxRCPtr<cgfxVertexAttribute> attribute = fVertexAttributes;
while( attribute.isNull() == false)
{
MString source( attribute->fSourceName);
if( attribute->fSourceName.length() == 0)
{
attribute->fSourceType = cgfxVertexAttribute::kNone;
if(attribute->fSemantic == "POSITION")
{
const MString warnMsg =
"position can't be empty! Will use default position data!";
attribute->fSourceName = "position";
attribute->fSourceType = cgfxVertexAttribute::kPosition;
}
}
else if( source == "position")
{
attribute->fSourceType = cgfxVertexAttribute::kPosition;
}
else if( source == "normal")
{
attribute->fSourceType = cgfxVertexAttribute::kNormal;
if( fNormalsPerVertex < 1)
fNormalsPerVertex = 1;
}
else
{
MString set = attribute->fSourceName;
int colon = set.
index(
':');
if( colon >= 0)
{
if( colon > 0) type = source.
substring( 0, colon - 1);
}
if( type == "uv")
{
attribute->fSourceType = cgfxVertexAttribute::kUV;
attribute->fSourceIndex = findOrInsert( set, fUVSets);
}
else if( type == "tangent")
{
attribute->fSourceType = cgfxVertexAttribute::kTangent;
if( fNormalsPerVertex < 2)
fNormalsPerVertex = 2;
attribute->fSourceIndex = findOrInsert( set, fUVSets);
}
else if( type == "binormal")
{
attribute->fSourceType = cgfxVertexAttribute::kBinormal;
if( fNormalsPerVertex < 3)
fNormalsPerVertex = 3;
attribute->fSourceIndex = findOrInsert( set, fUVSets);
}
else if( type == "color")
{
attribute->fSourceType = cgfxVertexAttribute::kColor;
attribute->fSourceIndex = findOrInsert( set, fColorSets);
}
else
{
attribute->fSourceType = cgfxVertexAttribute::kBlindData;
}
}
attribute = attribute->fNext;
}
}
cgfxShaderNode::getTexCoordSource() const
{
#ifdef KH_DEBUG
if (fConstructed )
ss += name();
ss += " ";
for ( int ii = 0; ii < fTexCoordSource.length(); ++ii )
{
ss += "\"";
ss += fTexCoordSource[ii];
ss += "\" ";
}
ss += "\n";
::OutputDebugString( ss.
asChar() );
#endif
return fTexCoordSource;
}
cgfxShaderNode::getColorSource() const
{
#ifdef KH_DEBUG
if (fConstructed )
ss += name();
ss += " ";
for ( int ii = 0; ii < fColorSource.length(); ++ii )
{
ss += "\"";
ss += fColorSource[ii];
ss += "\" ";
}
ss += "\n";
::OutputDebugString( ss.
asChar() );
#endif
return fColorSource;
}
void
cgfxShaderNode::setDataSources(
const MStringArray* texCoordSources,
{
if( texCoordSources )
{
int length_TC = texCoordSources->
length();
if ( length_TC > CGFXSHADERNODE_GL_TEXTURE_MAX )
length_TC = CGFXSHADERNODE_GL_TEXTURE_MAX;
fTexCoordSource.clear();
for ( int i = 0; i < length_TC; ++i )
{
fTexCoordSource.append( (*texCoordSources)[ i ] );
}
}
if( colorSources )
{
int length_CS = colorSources->
length();
if ( length_CS > CGFXSHADERNODE_GL_COLOR_MAX )
length_CS = CGFXSHADERNODE_GL_COLOR_MAX;
fColorSource.setLength( length_CS );
for ( int i = 0; i < length_CS; ++i )
fColorSource[ i ] = (*colorSources)[ i ];
}
fDataSetNames.clear();
fNormalsPerVertex = 1;
updateDataSource( fTexCoordSource, fTexCoordType, fTexCoordIndex);
updateDataSource( fColorSource, fColorType, fColorIndex);
}
void
{
#ifdef KH_DEBUG
if (fConstructed )
ss += name();
ss += " ";
for (
int ii = 0; ii < v.
length(); ++ii )
{
ss += "\"";
ss += v[ii];
ss += "\" ";
}
ss += "\n";
::OutputDebugString( ss.
asChar() );
#endif
for ( int iDataSet = 0; iDataSet < nDataSets; ++iDataSet )
{
int iType = etcNull;
int iBuf = 0;
const char* bp = v[ iDataSet ].asChar();
const char* ep = v[ iDataSet ].
length() + bp;
#ifdef _WIN32
while ( bp < ep && *bp <= ' ' && *bp >= '\0') ++bp;
#else
while ( bp < ep && *bp <= ' ') ++bp;
#endif
#ifdef _WIN32
while ( bp < ep && ep[-1] <= ' ' && ep[-1] >= '\0' ) --ep;
#else
while ( bp < ep && ep[-1] <= ' ' ) --ep;
#endif
if ( bp == ep )
iType = etcNull;
else if ( (*bp >= '0' && *bp <= '9') ||
*bp == '-' ||
*bp == '+' ||
*bp == '.' )
{
const char* cp = bp;
int nValues = 0;
while ( cp < ep &&
nValues < 4 )
{
float x;
int nc = 0;
int nv = sscanf( cp, " %f%n", &x, &nc );
if ( nv != 1 )
break;
++nValues;
cp += nc;
}
if ( nValues > 0 )
{
s.
set( bp, (
int)(cp - bp) );
for ( ; nValues < 4; ++nValues )
s += " 0";
iType = etcConstant;
}
}
else
{
s.
set( bp, (
int)(ep - bp) );
#define kDefaultUVSet "map1"
{
s = splitStrings[0];
iBuf = findOrAppend( fDataSetNames, splitStrings[1]);
}
if ( 0 == stricmp( "normal", bp ) )
{
s = "normal";
iType = etcNormal;
}
else if ( 0 == stricmp( "tangent", bp ) )
{
s = "tangent";
if( splitStrings.
length() < 2)
{
splitStrings[ 1] = kDefaultUVSet;
iBuf = findOrAppend( fDataSetNames, kDefaultUVSet);
}
s += ":" + splitStrings[1];
iType = etcTangent;
if( fNormalsPerVertex < 2)
fNormalsPerVertex = 2;
}
else if ( 0 == stricmp( "binormal", bp ) )
{
s = "binormal";
if( splitStrings.
length() < 2)
{
splitStrings[ 1] = kDefaultUVSet;
iBuf = findOrAppend( fDataSetNames, kDefaultUVSet);
}
s += ":" + splitStrings[1];
iType = etcBinormal;
fNormalsPerVertex = 3;
}
else
{
iType = etcDataSet;
iBuf = findOrAppend( fDataSetNames, s );
}
}
typeList[ iDataSet ] = iType;
indexList[ iDataSet ] = iBuf;
v[ iDataSet ] = s;
}
}
cgfxShaderNode::getEmptyUVSets() const
{
return saNull;
}
cgfxShaderNode::getEmptyUVSetShapes() const
{
return oaNull;
}
void
cgfxShaderNode::setEffect(const cgfxRCPtr<cgfxEffect const>& pNewEffect)
{
cgfxShaderNode::removeAssociation(this, fEffect);
fEffect = pNewEffect;
cgfxShaderNode::addAssociation(this, fEffect);
updateTechniqueList();
setTechnique( getTechnique() );
}
void
cgfxShaderNode::updateTechniqueList()
{
fTechniqueList.clear();
if (!fEffect.isNull() && fEffect->isValid())
{
const cgfxTechnique* technique = fEffect->getFirstTechnique();
while (technique)
{
s += technique->getName();
if (technique->isValid())
{
s += "\t";
s += technique->getNumPasses();
}
else
{
s += "\t0";
}
fTechniqueList.append(s);
technique = technique->getNext();
}
}
}
bool cgfxShaderNode::hasTransparency()
{
return false;
}
unsigned int cgfxShaderNode::transparencyOptions()
{
if (fCurrentTechnique && fCurrentTechnique->isValid() && fCurrentTechnique->hasBlending())
{
return ( kIsTransparent | kNoTransparencyFrontBackCull | kNoTransparencyPolygonSort );
}
return 0;
}
void
cgfxShaderNode::setTechnique(
const MString& techn )
{
if (fEffect.isNull() || !fEffect->isValid())
{
fTechnique = techn;
return;
}
const cgfxTechnique* technique = fEffect->getTechnique(techn);
if (technique) {
if (technique->isValid())
{
fTechnique = techn;
fCurrentTechnique = technique;
setVertexAttributes(fCurrentTechnique->getVertexAttributes());
fBoundDataCache.flush();
++fGeomReqDataVersionId;
return;
}
else {
s += typeName();
s += " \"";
s += name();
s += "\" : unable to validate technique \"";
s += "\"";
}
}
else if (!shaderFxFileChanged()) {
s += typeName();
s += " \"";
s += name();
s += "\" : unable to find technique \"";
s += "\"";
}
}
if (fTechnique.length() != 0 && fTechnique != techn) {
const cgfxTechnique* technique = fEffect->getTechnique(techn);
if (technique) {
if (technique->isValid())
{
fCurrentTechnique = technique;
setVertexAttributes(fCurrentTechnique->getVertexAttributes());
fBoundDataCache.flush();
return;
}
else {
s += typeName();
s += " \"";
s += name();
s += "\" : unable to validate technique \"";
s += "\"";
}
}
else if (!shaderFxFileChanged()) {
s += typeName();
s += " \"";
s += name();
s += "\" : unable to find technique \"";
s += "\"";
}
}
const cgfxTechnique* technique = fEffect->getFirstTechnique();
while (technique)
{
if (technique->isValid())
{
fTechnique = technique->getName();
fCurrentTechnique = technique;
setVertexAttributes(fCurrentTechnique->getVertexAttributes());
fBoundDataCache.flush();
++fGeomReqDataVersionId;
return;
}
technique = technique->getNext();
}
fTechnique = techn;
s += typeName();
s += " \"";
s += name();
s += "\" : unable to find a valid technique.";
}
void
cgfxShaderNode::setProfile(
const MString& profileName )
{
const cgfxProfile* profile = cgfxProfile::getProfile(profileName);
if (profile) {
fProfileName = profileName;
setProfile(profile);
}
else {
fProfileName = "";
setProfile(NULL);
if (profileName.
length() > 0) {
sMsg += "The profile \"";
sMsg += profileName;
sMsg += "\" is not a supported profile on your platform. Reverting to use the default profile.";
}
}
}
void
cgfxShaderNode::setProfile( const cgfxProfile* profile )
{
if (fEffect.isNull() || !fEffect->isValid())
return;
fEffect->setProfile(profile);
updateTechniqueList();
setTechnique(fTechnique);
}
MStatus cgfxShaderNode::shouldSave (
const MPlug & plug,
bool & ret )
{
if (plug == sAttributeList)
{
ret = true;
return MS::kSuccess;
}
else if (plug == sVertexAttributeList)
{
ret = true;
return MS::kSuccess;
}
}
void cgfxShaderNode::setTexturesByName(bool texturesByName, bool updateAttributes)
{
if( updateAttributes && fTexturesByName != texturesByName)
{
const cgfxRCPtr<cgfxAttrDefList>& nodeList = attrDefList();
cgfxAttrDefList::iterator nmIt;
bool foundTextures = false;
for (nmIt = nodeList->begin(); nmIt; ++nmIt)
{
cgfxAttrDef* adef = (*nmIt);
if(adef->fType >= cgfxAttrDef::kAttrTypeFirstTexture && adef->fType <= cgfxAttrDef::kAttrTypeLastTexture)
{
MObject theMObject = thisMObject();
adef->destroyAttribute( theMObject, &dgMod);
foundTextures = true;
}
}
fTexturesByName = texturesByName;
if( foundTextures)
{
for (nmIt = nodeList->begin(); nmIt; ++nmIt)
{
cgfxAttrDef* adef = (*nmIt);
if( adef->fType >= cgfxAttrDef::kAttrTypeFirstTexture && adef->fType <= cgfxAttrDef::kAttrTypeLastTexture)
{
adef->createAttribute(thisMObject(), &dgMod, this);
}
}
if( fTexturesByName)
{
for (nmIt = nodeList->begin(); nmIt; ++nmIt)
{
cgfxAttrDef* adef = (*nmIt);
if( adef->fType >= cgfxAttrDef::kAttrTypeFirstTexture &&
adef->fType <= cgfxAttrDef::kAttrTypeLastTexture)
{
MObject theMObject = thisMObject();
adef->setTexture( theMObject, adef->fStringDef, &dgMod);
}
}
}
}
}
else
{
fTexturesByName = texturesByName;
}
}
cgfxShaderNode::getPluginVersion()
{
sVer += CGFXSHADER_VERSION;
sVer += " for Maya ";
sVer += (int)(MAYA_API_VERSION / 100);
sVer += ".";
sVer += (int)(MAYA_API_VERSION % 100 / 10);
sVer += " (";
sVer += __DATE__;
sVer += ")";
return sVer;
}
void
cgfxShaderNode::reportInternalError( const char* function, size_t errcode )
{
try
{
if (fConstructed)
{
if ( ++fErrorCount > fErrorLimit )
return;
s += "\"";
s += name();
s += "\": ";
s += typeName();
es = s;
}
}
catch ( ... )
{}
es += " internal error ";
es += (int)errcode;
es += " in ";
es += function;
#ifdef KH_DEBUG
::OutputDebugString( es.
asChar() );
::OutputDebugString( "\n" );
#endif
}
void
cgfxShaderNode::cgErrorCallBack()
{
CGerror cgLastError = cgGetError();
if(cgLastError)
{
}
}
void
cgfxShaderNode::cgErrorHandler(CGcontext cgContext, CGerror cgError, void* userData)
{
}
void cgfxShaderNode::getNodesUsingEffect(const cgfxRCPtr<const cgfxEffect>& effect, NodeList &nodes)
{
Effect2NodesMap::const_iterator it = sEffect2NodesMap.find( effect.operator->() );
if(it != sEffect2NodesMap.end())
{
const NodeList &nodeList = it->second;
nodes.insert(nodeList.begin(), nodeList.end());
}
}
void cgfxShaderNode::addAssociation(cgfxShaderNode* node, const cgfxRCPtr<const cgfxEffect>& effect)
{
if(effect.isNull() == false)
{
NodeList &nodes = sEffect2NodesMap[ effect.operator->() ];
nodes.insert(node);
}
}
void cgfxShaderNode::removeAssociation(cgfxShaderNode* node, const cgfxRCPtr<const cgfxEffect>& effect)
{
if(effect.isNull() == false)
{
Effect2NodesMap::iterator it = sEffect2NodesMap.find( effect.operator->() );
if(it != sEffect2NodesMap.end())
{
NodeList &nodes = it->second;
nodes.erase(node);
if(nodes.empty())
sEffect2NodesMap.erase(it);
}
}
}
void cgfxShaderNode::attributeAddedOrRemovedCB(
void* clientData)
{
clientData &&
{
cgfxShaderNode* shaderNode = (cgfxShaderNode*)clientData;
if (!shaderNode->effect().isNull())
{
shaderNode->setShaderFxFileChanged(true);
shaderNode->setEffect(cgfxRCPtr<const cgfxEffect>());
}
}
}
const MString cgfxShaderOverride::drawDbClassification(
"drawdb/shader/surface/cgfxShader");
const MString cgfxShaderOverride::drawRegistrantId(
"cgfxShaderRegistrantId");
cgfxShaderNode* cgfxShaderOverride::sActiveShaderNode = NULL;
cgfxShaderNode* cgfxShaderOverride::sLastDrawShaderNode = NULL;
{
return new cgfxShaderOverride(obj);
}
cgfxShaderOverride::cgfxShaderOverride(
const MObject& obj)
: MPxShaderOverride(obj)
, fShaderNode(NULL)
, fGeomReqDataVersionId(0)
, fNeedPassSetterInit(false)
, fOldBlendState(NULL)
, fOldDepthStencilState(NULL)
, fOldRasterizerState(NULL)
{
}
cgfxShaderOverride::~cgfxShaderOverride()
{
fShaderNode = NULL;
}
{
TRACE_API_CALLS("cgfxShaderOverride::initialize");
glStateCache::instance().reset();
if ( glStateCache::sMaxTextureUnits <= 0 )
{
#ifdef _WIN32
#define RESOLVE_GL_EXTENSION( fn, ext) wglGetProcAddress( #fn #ext)
#elif defined LINUX
#define RESOLVE_GL_EXTENSION( fn, ext) &fn ## ext
#else
#define RESOLVE_GL_EXTENSION( fn, ext) &fn
#endif
glStateCache::glClientActiveTexture = (PFNGLCLIENTACTIVETEXTUREARBPROC) RESOLVE_GL_EXTENSION( glClientActiveTexture, ARB);
glStateCache::glVertexAttribPointer = (PFNGLVERTEXATTRIBPOINTERARBPROC) RESOLVE_GL_EXTENSION( glVertexAttribPointer, ARB);
glStateCache::glEnableVertexAttribArray = (PFNGLENABLEVERTEXATTRIBARRAYARBPROC) RESOLVE_GL_EXTENSION( glEnableVertexAttribArray, ARB);
glStateCache::glDisableVertexAttribArray = (PFNGLDISABLEVERTEXATTRIBARRAYARBPROC) RESOLVE_GL_EXTENSION( glDisableVertexAttribArray, ARB);
glStateCache::glVertexAttrib4f = (PFNGLVERTEXATTRIB4FARBPROC) RESOLVE_GL_EXTENSION( glVertexAttrib4f, ARB);
glStateCache::glSecondaryColorPointer = (PFNGLSECONDARYCOLORPOINTEREXTPROC) RESOLVE_GL_EXTENSION( glSecondaryColorPointer, EXT);
glStateCache::glSecondaryColor3f = (PFNGLSECONDARYCOLOR3FEXTPROC) RESOLVE_GL_EXTENSION( glSecondaryColor3f, EXT);
glStateCache::glMultiTexCoord4fARB = (PFNGLMULTITEXCOORD4FARBPROC) RESOLVE_GL_EXTENSION( glMultiTexCoord4f, ARB);
GLint tval;
glGetIntegerv( GL_MAX_TEXTURE_COORDS_ARB, &tval );
GLint mic = 0;
glGetIntegerv( GL_MAX_TEXTURE_IMAGE_UNITS_ARB, &mic );
if (mic < tval)
tval = mic;
glStateCache::sMaxTextureUnits = tval;
if (!glStateCache::glClientActiveTexture || glStateCache::sMaxTextureUnits < 1)
glStateCache::sMaxTextureUnits = 1;
else if (glStateCache::sMaxTextureUnits > CGFXSHADERNODE_GL_TEXTURE_MAX)
glStateCache::sMaxTextureUnits = CGFXSHADERNODE_GL_TEXTURE_MAX;
}
{
}
else
fShaderNode = NULL;
bool useCustomPrimitiveGenerator = false;
if (fShaderNode)
{
static bool enableCustomPrimitiveGenerator = (getenv("MAYA_USE_CUSTOMPRIMITIVEGENERATOR") != NULL);
fShaderNode->createEffect();
const cgfxTechnique* technique = fShaderNode->fCurrentTechnique;
if (technique && technique->isValid())
{
cgfxRCPtr<cgfxVertexAttribute> pVertexAttribute = fShaderNode->fVertexAttributes;
while(pVertexAttribute.isNull() == false)
{
sourceName = pVertexAttribute->fSourceName;
if ( sourceName == "position")
{
sourceName = "";
}
else if( sourceName == "normal")
{
sourceName = "";
}
else
{
MString set = pVertexAttribute->fSourceName;
int colon = set.
index(
':');
if( colon >= 0)
{
}
}
int dimension = 1;
unsigned int dimensionIndex = UINT_MAX;
if(pVertexAttribute->fType.indexW(
MString(
"float") ) == 0)
{
dimensionIndex = 5;
}
else if(pVertexAttribute->fType.indexW(
MString(
"half") ) == 0)
{
dimensionIndex = 4;
}
else if(pVertexAttribute->fType.indexW(
MString(
"int") ) == 0)
{
dimensionIndex = 3;
}
if(dimensionIndex < pVertexAttribute->fType.length())
{
char dim = pVertexAttribute->fType.asChar()[dimensionIndex];
dimension = dim - '0';
}
cgfxVertexAttribute::SourceType sourceType = pVertexAttribute->fSourceType;
if(enableCustomPrimitiveGenerator &&
(pVertexAttribute->fSourceType == cgfxVertexAttribute::kBlindData || pVertexAttribute->fSourceType == cgfxVertexAttribute::kPosition) &&
pVertexAttribute->fSemantic == "ATTR7") {
useCustomPrimitiveGenerator = true;
sourceType = cgfxVertexAttribute::kPosition;
pVertexAttribute->fSourceName = "position";
semanticName = "customPositionStream";
}
else if(enableCustomPrimitiveGenerator &&
(pVertexAttribute->fSourceType == cgfxVertexAttribute::kBlindData || pVertexAttribute->fSourceType == cgfxVertexAttribute::kNormal) &&
pVertexAttribute->fSemantic == "ATTR8") {
useCustomPrimitiveGenerator = true;
sourceType = cgfxVertexAttribute::kNormal;
pVertexAttribute->fSourceName = "normal";
semanticName = "customNormalStream";
}
else if(pVertexAttribute->fSourceType == cgfxVertexAttribute::kBlindData) {
sourceType = cgfxVertexAttribute::kUV;
semanticName = pVertexAttribute->fSourceName;
}
MStatus geomReqStatus = MS::kFailure;
switch(sourceType)
{
case cgfxVertexAttribute::kPosition:
{
sourceName,
dataType,
dimension);
desc.setSemanticName(semanticName);
geomReqStatus = addGeometryRequirement(desc);
}
break;
case cgfxVertexAttribute::kNormal:
{
sourceName,
dataType,
dimension);
desc.setSemanticName(semanticName);
geomReqStatus = addGeometryRequirement(desc);
}
break;
case cgfxVertexAttribute::kUV:
{
if (semanticName.
length() == 0)
{
dimension = 2;
}
sourceName,
dataType,
dimension);
desc.setSemanticName(semanticName);
geomReqStatus = addGeometryRequirement(desc);
}
break;
case cgfxVertexAttribute::kTangent:
{
sourceName,
dataType,
dimension);
desc.setSemanticName(semanticName);
geomReqStatus = addGeometryRequirement(desc);
}
break;
case cgfxVertexAttribute::kBinormal:
{
sourceName,
dataType,
dimension);
desc.setSemanticName(semanticName);
geomReqStatus = addGeometryRequirement(desc);
}
break;
case cgfxVertexAttribute::kColor:
{
sourceName,
dataType,
dimension);
desc.setSemanticName(semanticName);
geomReqStatus = addGeometryRequirement(desc);
}
break;
default:;
}
if (geomReqStatus != MS::kSuccess) {
MString s =
"cgfxShader : Can't find the source named \"";
s += pVertexAttribute->fSourceName;;
s += "\" for vertex attribute \"";
s += pVertexAttribute->fName;;
s +="\".";
}
pVertexAttribute = pVertexAttribute->fNext;
}
}
}
fGeomReqDataVersionId = fShaderNode->fGeomReqDataVersionId;
fNeedPassSetterInit = true;
if (useCustomPrimitiveGenerator)
{
MString customPrimitiveName(
"customPrimitiveTest");
addIndexingRequirement(indexingRequirement);
}
(
MString(
"Autodesk Maya cgfxShaderOverride, shader file = ") +
fShaderNode->shaderFxFile() +
fShaderNode->getTechnique() +
fShaderNode->getProfile());
return result;
}
void cgfxShaderOverride::updateDG(
MObject object)
{
TRACE_API_CALLS("cgfxShaderOverride::updateDG");
{
}
else
fShaderNode = NULL;
}
void cgfxShaderOverride::updateDevice()
{
}
void cgfxShaderOverride::endUpdate()
{
}
{
bool handlePass = false;
for (
unsigned int i = 0; i < passSem.
length(); i++)
{
{
handlePass = true;
}
{
handlePass = false;
}
}
return handlePass;
}
{
TRACE_API_CALLS("cgfxShaderOverride::activateKey");
if (!fShaderNode)
{
return;
}
sActiveShaderNode = fShaderNode;
sLastDrawShaderNode = NULL;
const cgfxTechnique* technique = sActiveShaderNode->fCurrentTechnique;
if(technique && technique->isValid())
{
cgfxPassStateSetter::registerCgStateCallBacks(
cgfxPassStateSetter::kVP20Viewport);
{
if (fNeedPassSetterInit) {
delete [] sActiveShaderNode->fPassStateSetters;
sActiveShaderNode->fPassStateSetters =
new cgfxPassStateSetter[technique->getNumPasses()];
const cgfxPass* pass = technique->getFirstPass();
for (int i=0; pass; ++i, pass = pass->getNext()) {
sActiveShaderNode->fPassStateSetters[i].init(
stateMgr, pass->getCgPass());
}
fNeedPassSetterInit = false;
}
}
glPushClientAttrib ( GL_CLIENT_ALL_ATTRIB_BITS );
glStateCache::instance().reset();
if (technique->getNumPasses() == 1) {
sActiveShaderNode->fPassStateSetters[0].setPassState(stateMgr);
}
}
}
bool cgfxShaderOverride::draw(
{
TRACE_API_CALLS("cgfxShaderOverride::draw");
if (!fShaderNode || !sActiveShaderNode)
{
return false;
}
static const bool debugPassInformation = false;
if (debugPassInformation)
{
printf(
"CgFx shader drawing in pass[%s], semantic[", passId.
asChar());
for (
unsigned int i=0; i<passSem.
length(); i++)
printf(" %s", passSem[i].asChar());
printf( "]\n");
}
if ( 0 == gGLFT )
{
_OPENMAYA_DEPRECATION_PUSH_AND_DISABLE_WARNING
_OPENMAYA_POP_WARNING
}
bool result = true;
const cgfxTechnique* technique = sActiveShaderNode->fCurrentTechnique;
if (technique && technique->isValid())
{
bool needFullCgSetPassState = false;
if (sLastDrawShaderNode != fShaderNode) {
try
{
needFullCgSetPassState = bindAttrValues();
checkGlErrors("cgfxShaderOverride::bindAttrValues");
}
catch ( cgfxShaderCommon::InternalError* e )
{
if (fShaderNode)
fShaderNode->reportInternalError( __FILE__, (size_t)e );
}
catch ( ... )
{
if (fShaderNode)
fShaderNode->reportInternalError( __FILE__, __LINE__ );
}
}
bindViewAttrValues(context);
const int numRenderItems = renderItemList.
length();
for (int renderItemIdx=0; renderItemIdx<numRenderItems; renderItemIdx++)
{
if (!renderItem) continue;
if (!geometry) continue;
bool boundData = true;
sourceStreamInfo *pBindSource = new sourceStreamInfo[bufferCount];
for (int i=0; i<bufferCount && boundData; i++)
{
if (!buffer)
{
boundData = false;
continue;
}
GLuint * dataBufferId = NULL;
if (!dataHandle)
{
boundData = false;
continue;
}
dataBufferId = (GLuint *)(dataHandle);
{
{
pBindSource[i].fSourceType = cgfxVertexAttribute::kPosition;
pBindSource[i].fSourceName = "position";
}
break;
{
pBindSource[i].fSourceType = cgfxVertexAttribute::kNormal;
pBindSource[i].fSourceName = "normal";
}
break;
{
{
pBindSource[i].fSourceName =
"uv:" + desc.
name();
pBindSource[i].fSourceType = cgfxVertexAttribute::kUV;
}
else
{
pBindSource[i].fSourceType = cgfxVertexAttribute::kBlindData;
}
}
break;
{
pBindSource[i].fSourceType = cgfxVertexAttribute::kColor;
pBindSource[i].fSourceName =
"color:" + desc.
name();
}
break;
{
pBindSource[i].fSourceType = cgfxVertexAttribute::kTangent;
pBindSource[i].fSourceName =
"tangent:" + desc.
name();
}
break;
{
pBindSource[i].fSourceType = cgfxVertexAttribute::kBinormal;
pBindSource[i].fSourceName =
"binormal:" + desc.
name();
}
break;
default:
{
pBindSource[i].fSourceType = cgfxVertexAttribute::kBlindData;
}
break;
}
pBindSource[i].fDimension = desc.
dimension();
pBindSource[i].fOffset = desc.
offset();
pBindSource[i].fStride = desc.
stride();
pBindSource[i].fDataBufferId = *dataBufferId;
}
{
unsigned int indexBufferCount = 0;
GLuint *indexBufferId = NULL;
if (indexHandle)
{
indexBufferId = (GLuint *)(indexHandle);
indexBufferCount = buffer->
size();
}
GLenum indexPrimTypeGL = GL_TRIANGLES;
switch (indexPrimType) {
indexPrimTypeGL = GL_POINTS; break;
indexPrimTypeGL = GL_LINES; break;
indexPrimTypeGL = GL_LINE_STRIP; break;
indexPrimTypeGL = GL_TRIANGLES; break;
indexPrimTypeGL = GL_TRIANGLE_STRIP; break;
default:
result = false;
break;
};
GLenum indexType =
if(!result)
break;
if (indexBufferId && (*indexBufferId > 0))
{
const cgfxPass* pass = technique->getFirstPass();
if (technique->getNumPasses() == 1) {
if (sLastDrawShaderNode == NULL) {
if (sActiveShaderNode->fPassStateSetters[0].isPushPopAttribsRequired()) {
gGLFT->glPushAttrib(GL_ALL_ATTRIB_BITS);
}
gGLFT->glUseProgramObjectARB(0);
pass->setCgState();
}
else {
if (needFullCgSetPassState) {
pass->setCgState();
}
else {
pass->updateCgParameters();
}
}
pass->bind(pBindSource, bufferCount);
gGLFT->glBindBufferARB(MGL_ELEMENT_ARRAY_BUFFER_ARB, *indexBufferId);
gGLFT->glDrawElements(indexPrimTypeGL, indexBufferCount, indexType, GLOBJECT_BUFFER_OFFSET(0));
}
else {
for (int i=0; pass; ++i, pass = pass->getNext()) {
sActiveShaderNode->fPassStateSetters[i].setPassState(stateMgr);
if (sActiveShaderNode->fPassStateSetters[i].isPushPopAttribsRequired()) {
gGLFT->glPushAttrib(GL_ALL_ATTRIB_BITS);
}
gGLFT->glUseProgramObjectARB(0);
pass->setCgState();
pass->bind(pBindSource, bufferCount);
gGLFT->glBindBufferARB(MGL_ELEMENT_ARRAY_BUFFER_ARB, *indexBufferId);
gGLFT->glDrawElements(indexPrimTypeGL, indexBufferCount, indexType, GLOBJECT_BUFFER_OFFSET(0));
glStateCache::instance().flushState();
pass->resetCgState();
if (sActiveShaderNode->fPassStateSetters[i].isPushPopAttribsRequired()) {
gGLFT->glPopAttrib();
}
}
}
}
}
delete[] pBindSource;
}
checkGlErrors("cgfxShaderOverride::draw");
sLastDrawShaderNode = fShaderNode;
}
else
{
result = false;
}
return result;
}
{
TRACE_API_CALLS("cgfxShaderOverride::terminateKey");
if (!fShaderNode || !sActiveShaderNode)
{
return;
}
const cgfxTechnique* technique = sActiveShaderNode->fCurrentTechnique;
if (technique && technique->isValid())
{
const cgfxPass* pass = technique->getFirstPass();
if (technique->getNumPasses() == 1) {
glStateCache::instance().flushState();
pass->resetCgState();
if (sActiveShaderNode->fPassStateSetters[0].isPushPopAttribsRequired())
{
_OPENMAYA_DEPRECATION_PUSH_AND_DISABLE_WARNING
_OPENMAYA_POP_WARNING
gGLFT->glPopAttrib();
}
}
glPopClientAttrib();
fOldBlendState = 0;
fOldDepthStencilState = 0;
fOldRasterizerState = 0;
}
sActiveShaderNode = NULL;
sLastDrawShaderNode = NULL;
}
{
}
bool cgfxShaderOverride::isTransparent()
{
if(fShaderNode && fShaderNode->fCurrentTechnique)
return fShaderNode->fCurrentTechnique->hasBlending();
return false;
}
bool cgfxShaderOverride::overridesDrawState()
{
return true;
}
bool cgfxShaderOverride::bindAttrValues() const
{
if (!fShaderNode || !sActiveShaderNode ||
sActiveShaderNode->fEffect.isNull() ||
!sActiveShaderNode->fEffect->isValid() ||
!sActiveShaderNode->fTechnique.length())
return false;
MObject oNode = fShaderNode->thisMObject();
_OPENMAYA_DEPRECATION_PUSH_AND_DISABLE_WARNING
_OPENMAYA_POP_WARNING
bool needFullCgSetPassState = false;
for (cgfxAttrDefList::iterator it(fShaderNode->fAttrDefList),
activeIt(sActiveShaderNode->fAttrDefList);
it; ++it, ++activeIt )
{
cgfxAttrDef* aDef = *it;
cgfxAttrDef* activeDef = *activeIt;
if (aDef->fName != activeDef->fName) {
fShaderNode->reportInternalError( __FILE__, __LINE__ );
}
try
{
switch (aDef->fType)
{
case cgfxAttrDef::kAttrTypeBool:
{
bool tmp;
aDef->getValue(oNode, tmp);
cgSetParameter1i(activeDef->fParameterHandle, tmp);
break;
}
case cgfxAttrDef::kAttrTypeInt:
{
int tmp;
aDef->getValue(oNode, tmp);
cgSetParameter1i(activeDef->fParameterHandle, tmp);
break;
}
case cgfxAttrDef::kAttrTypeFloat:
{
float tmp;
aDef->getValue(oNode, tmp);
cgSetParameter1f(activeDef->fParameterHandle, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeString:
{
aDef->getValue(oNode, tmp);
cgSetStringParameterValue(activeDef->fParameterHandle, tmp.
asChar());
break;
}
case cgfxAttrDef::kAttrTypeVector2:
{
float tmp[2];
aDef->getValue(oNode, tmp[0], tmp[1]);
cgSetParameter2fv(activeDef->fParameterHandle, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeVector3:
case cgfxAttrDef::kAttrTypeColor3:
{
float tmp[3];
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2]);
cgSetParameter3fv(activeDef->fParameterHandle, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeVector4:
case cgfxAttrDef::kAttrTypeColor4:
{
float tmp[4];
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2], tmp[3]);
cgSetParameter4fv(activeDef->fParameterHandle, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeWorldDir:
case cgfxAttrDef::kAttrTypeWorldPos:
{
float tmp[4];
if (aDef->fSize == 3)
{
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2]);
tmp[3] = 1.0;
}
else
{
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2], tmp[3]);
}
cgSetParameterValuefr(activeDef->fParameterHandle, aDef->fSize, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeMatrix:
{
float tmp2[4][4];
aDef->getValue(oNode, tmp);
if (aDef->fInvertMatrix)
{
}
if (!aDef->fTransposeMatrix)
{
}
cgSetMatrixParameterfr(activeDef->fParameterHandle, &tmp2[0][0]);
break;
}
case cgfxAttrDef::kAttrTypeColor1DTexture:
case cgfxAttrDef::kAttrTypeColor2DTexture:
case cgfxAttrDef::kAttrTypeColor3DTexture:
case cgfxAttrDef::kAttrTypeColor2DRectTexture:
case cgfxAttrDef::kAttrTypeNormalTexture:
case cgfxAttrDef::kAttrTypeBumpTexture:
case cgfxAttrDef::kAttrTypeCubeTexture:
case cgfxAttrDef::kAttrTypeEnvTexture:
case cgfxAttrDef::kAttrTypeNormalizationTexture:
{
if( fShaderNode->fTexturesByName)
{
aDef->getValue(oNode, texFileName);
}
else
{
aDef->getSource(oNode, srcPlug);
{
MPlug filenamePlug = dgFn.findPlug(
"fileTextureName",
true, &rc);
{
textureNode = filenamePlug.
node(&rc);
}
{
aDef->releaseTexture();
textureNode, textureChangedCallback, aDef);
}
}
}
if (aDef->fTexture.isNull() || texFileName != aDef->fStringDef)
{
aDef->fStringDef = texFileName;
aDef->fTexture = cgfxTextureCache::instance().getTexture(
texFileName, textureNode, fShaderNode->fShaderFxFile,
aDef->fName, aDef->fType);
cgGLSetupSampler(activeDef->fParameterHandle, aDef->fTexture->getTextureId());
if (!aDef->fTexture->isValid() && texFileName.
length() > 0) {
sMsg += fnNode.name();
sMsg += " : failed to load texture \"";
sMsg += texFileName;
sMsg += "\".";
}
needFullCgSetPassState = true;
}
else if (sLastDrawShaderNode == NULL) {
cgGLSetTextureParameter(activeDef->fParameterHandle, aDef->fTexture->getTextureId());
}
else {
GLuint textureId = aDef->fTexture->getTextureId();
cgGLSetTextureParameter(activeDef->fParameterHandle, textureId);
GLenum texEnum = cgGLGetTextureEnum(activeDef->fParameterHandle);
gGLFT->glActiveTexture(texEnum);
switch (aDef->fType)
{
case cgfxAttrDef::kAttrTypeColor1DTexture:
gGLFT->glBindTexture(GL_TEXTURE_1D, textureId);
break;
case cgfxAttrDef::kAttrTypeColor2DTexture:
case cgfxAttrDef::kAttrTypeNormalTexture:
case cgfxAttrDef::kAttrTypeBumpTexture:
#if !defined(WIN32) && !defined(LINUX)
case cgfxAttrDef::kAttrTypeColor2DRectTexture:
#endif
gGLFT->glBindTexture(GL_TEXTURE_2D, textureId);
break;
case cgfxAttrDef::kAttrTypeEnvTexture:
case cgfxAttrDef::kAttrTypeCubeTexture:
case cgfxAttrDef::kAttrTypeNormalizationTexture:
{
gGLFT->glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, textureId);
break;
}
case cgfxAttrDef::kAttrTypeColor3DTexture:
gGLFT->glBindTexture(GL_TEXTURE_3D, textureId);
#if defined(WIN32) || defined(LINUX)
case cgfxAttrDef::kAttrTypeColor2DRectTexture:
gGLFT->glBindTexture(GL_TEXTURE_RECTANGLE_NV, textureId);
break;
#endif
default:
assert(false);
}
}
checkGlErrors("After loading texture");
break;
}
#ifdef _WIN32
case cgfxAttrDef::kAttrTypeTime:
{
int ival = timeGetTime() & 0xffffff;
float val = (float)ival * 0.001f;
cgSetParameter1f(activeDef->fParameterHandle, val);
break;
}
#endif
case cgfxAttrDef::kAttrTypeOther:
case cgfxAttrDef::kAttrTypeUnknown:
break;
case cgfxAttrDef::kAttrTypeObjectDir:
case cgfxAttrDef::kAttrTypeViewDir:
case cgfxAttrDef::kAttrTypeProjectionDir:
case cgfxAttrDef::kAttrTypeScreenDir:
case cgfxAttrDef::kAttrTypeObjectPos:
case cgfxAttrDef::kAttrTypeViewPos:
case cgfxAttrDef::kAttrTypeProjectionPos:
case cgfxAttrDef::kAttrTypeScreenPos:
case cgfxAttrDef::kAttrTypeWorldMatrix:
case cgfxAttrDef::kAttrTypeViewMatrix:
case cgfxAttrDef::kAttrTypeProjectionMatrix:
case cgfxAttrDef::kAttrTypeWorldViewMatrix:
case cgfxAttrDef::kAttrTypeWorldViewProjectionMatrix:
break;
default:
M_CHECK( false );
}
}
catch ( cgfxShaderCommon::InternalError* e )
{
if ( ++fShaderNode->fErrorCount <= fShaderNode->fErrorLimit )
{
size_t ee = (size_t)e;
MString sMsg =
"cgfxShader warning ";
sMsg += (int)ee;
sMsg += ": ";
sMsg += fnNode.name();
sMsg += " internal error while setting parameter \"";
sMsg += aDef->fName;
sMsg += "\" of effect \"";
sMsg += fShaderNode->fShaderFxFile;
sMsg += "\" for shape ";
sMsg += fShaderNode->currentPath().partialPathName();
}
}
}
return needFullCgSetPassState;
}
{
if (!fShaderNode || !sActiveShaderNode ||
sActiveShaderNode->fEffect.isNull() ||
!sActiveShaderNode->fEffect->isValid() ||
!sActiveShaderNode->fTechnique.length())
return;
MObject oNode = fShaderNode->thisMObject();
MMatrix wMatrix, vMatrix, pMatrix, sMatrix;
MMatrix wvMatrix, wvpMatrix, wvpsMatrix;
{
int vpt[4];
float depth[2];
double x0, y0, z0, w, h, d;
x0 = (double)vpt[0];
y0 = (double)vpt[1];
z0 = depth[0];
w = (double)vpt[2];
h = (double)vpt[3];
d = depth[1] - z0;
double* s = &sMatrix.
matrix[0][0];
s[ 0] = w/2; s[ 1] = 0.0; s[ 2] = 0.0; s[ 3] = 0.0;
s[ 4] = 0.0; s[ 5] = h/2; s[ 6] = 0.0; s[ 7] = 0.0;
s[ 8] = 0.0; s[ 9] = 0.0; s[10] = d/2; s[11] = 0.0;
s[12] = x0+w/2; s[13] = y0+h/2; s[14] = z0+d/2; s[15] = 1.0;
vpsMatrix = vpMatrix * sMatrix;
wvpsMatrix = wvpMatrix * sMatrix;
}
for (cgfxAttrDefList::iterator it(fShaderNode->fAttrDefList),
activeIt(sActiveShaderNode->fAttrDefList);
it; ++it, ++activeIt )
{
cgfxAttrDef* aDef = *it;
cgfxAttrDef* activeDef = *activeIt;
if (aDef->fName != activeDef->fName) {
fShaderNode->reportInternalError( __FILE__, __LINE__ );
}
try
{
switch (aDef->fType)
{
case cgfxAttrDef::kAttrTypeObjectDir:
case cgfxAttrDef::kAttrTypeViewDir:
case cgfxAttrDef::kAttrTypeProjectionDir:
case cgfxAttrDef::kAttrTypeScreenDir:
case cgfxAttrDef::kAttrTypeObjectPos:
case cgfxAttrDef::kAttrTypeViewPos:
case cgfxAttrDef::kAttrTypeProjectionPos:
case cgfxAttrDef::kAttrTypeScreenPos:
{
float tmp[4];
if (aDef->fSize == 3)
{
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2]);
tmp[3] = 1.0;
}
else
{
aDef->getValue(oNode, tmp[0], tmp[1], tmp[2], tmp[3]);
}
int space = aDef->fType - cgfxAttrDef::kAttrTypeFirstPos;
if (space < 0)
{
space = aDef->fType - cgfxAttrDef::kAttrTypeFirstDir;
}
switch (space)
{
case 0: mat = wMatrix.
inverse();
break;
case 1: break;
case 2: mat = vMatrix; break;
case 3: mat = vpMatrix; break;
case 4: mat = vpsMatrix; break;
}
int base = cgfxAttrDef::kAttrTypeFirstPos;
if (aDef->fType <= cgfxAttrDef::kAttrTypeLastDir)
base = cgfxAttrDef::kAttrTypeFirstDir;
if (base == cgfxAttrDef::kAttrTypeFirstPos)
{
MPoint point(tmp[0], tmp[1], tmp[2], tmp[3]);
point *= mat;
tmp[0] = (float)point.x;
tmp[1] = (float)point.y;
tmp[2] = (float)point.z;
tmp[3] = (float)point.w;
}
else
{
MVector vec(tmp[0], tmp[1], tmp[2]);
vec *= mat;
tmp[0] = (float)vec.x;
tmp[1] = (float)vec.y;
tmp[2] = (float)vec.z;
tmp[3] = 1.F;
}
cgSetParameterValuefc(activeDef->fParameterHandle, aDef->fSize, tmp);
aDef->setUnitsToInternal(aDef->fParameterHandle);
break;
}
case cgfxAttrDef::kAttrTypeWorldMatrix:
case cgfxAttrDef::kAttrTypeViewMatrix:
case cgfxAttrDef::kAttrTypeProjectionMatrix:
case cgfxAttrDef::kAttrTypeWorldViewMatrix:
case cgfxAttrDef::kAttrTypeWorldViewProjectionMatrix:
{
switch (aDef->fType)
{
case cgfxAttrDef::kAttrTypeWorldMatrix:
break;
case cgfxAttrDef::kAttrTypeViewMatrix:
break;
case cgfxAttrDef::kAttrTypeProjectionMatrix:
break;
case cgfxAttrDef::kAttrTypeWorldViewMatrix:
break;
case cgfxAttrDef::kAttrTypeWorldViewProjectionMatrix:
break;
default:
break;
}
double tmp[4][4];
cgSetMatrixParameterdr(activeDef->fParameterHandle, &tmp[0][0]);
break;
}
case cgfxAttrDef::kAttrTypeHardwareFogEnabled:
{
cgSetParameter1i(activeDef->fParameterHandle, fogEnabled);
break;
}
case cgfxAttrDef::kAttrTypeHardwareFogMode:
{
unsigned int fogMode = hwFogParams.
HwFogMode;
cgSetParameter1i(activeDef->fParameterHandle, fogMode);
break;
}
case cgfxAttrDef::kAttrTypeHardwareFogStart:
{
cgSetParameter1f(activeDef->fParameterHandle, fogStart);
break;
}
case cgfxAttrDef::kAttrTypeHardwareFogEnd:
{
cgSetParameter1f(activeDef->fParameterHandle, fogEnd);
break;
}
case cgfxAttrDef::kAttrTypeHardwareFogDensity:
{
cgSetParameter1f(activeDef->fParameterHandle, fogDensity);
break;
}
case cgfxAttrDef::kAttrTypeHardwareFogColor:
{
cgSetParameter4fv(activeDef->fParameterHandle, &hwFogParams.
HwFogColor[0]);
break;
}
default:
break;
}
}
catch ( cgfxShaderCommon::InternalError* e )
{
if ( ++fShaderNode->fErrorCount <= fShaderNode->fErrorLimit )
{
size_t ee = (size_t)e;
MString sMsg =
"cgfxShader warning ";
sMsg += (int)ee;
sMsg += ": ";
sMsg += fnNode.name();
sMsg += " internal error while setting parameter \"";
sMsg += aDef->fName;
sMsg += "\" of effect \"";
sMsg += fShaderNode->fShaderFxFile;
sMsg += "\" for shape ";
}
}
}
}