C++ API Reference
cgFx/nv_dds.cpp
//
// Copyright (C) 2002-2003 NVIDIA
//
// File: nv_dds.cpp
//-
// ==========================================================================
// Copyright 2015 Autodesk, Inc. All rights reserved.
//
// Use of this software is subject to the terms of the Autodesk
// license agreement provided at the time of installation or download,
// or which otherwise accompanies this software in either electronic
// or hard copy form.
// ==========================================================================
//+
//
// Description:
//
// Loads DDS images (DXTC1, DXTC3, DXTC5, RGB (888, 888X), and RGBA (8888) are
// supported) for use in OpenGL. Image is flipped when its loaded as DX images
// are stored with different coordinate system. If file has mipmaps and/or
// cubemaps then these are loaded as well. Volume textures can be loaded as
// well but they must be uncompressed.
//
// When multiple textures are loaded (i.e a volume or cubemap texture),
// additional faces can be accessed using the array operator.
//
// The mipmaps for each face are also stored in a list and can be accessed like
// so: image.get_mipmap() (which accesses the first mipmap of the first
// image). To get the number of mipmaps call the get_num_mipmaps function for
// a given texture.
//
// Call the is_volume() or is_cubemap() function to check that a loaded image
// is a volume or cubemap texture respectively. If a volume texture is loaded
// then the get_depth() function should return a number greater than 1.
// Mipmapped volume textures and DXTC compressed volume textures are supported.
//
//
// Update: 6/11/2002
//
// Added some convenience functions to handle uploading textures to OpenGL. The
// following functions have been added:
//
// bool upload_texture1D();
// bool upload_texture2D(int imageIndex = 0, GLenum target = GL_TEXTURE_2D);
// bool upload_textureRectangle();
// bool upload_texture3D();
// bool upload_textureCubemap();
//
// See function implementation below for instructions/comments on using each
// function.
//
// The open function has also been updated to take an optional second parameter
// specifying whether the image should be flipped on load. This defaults to
// true.
//
// Sample usage
//
// Loading a compressed texture:
//
// CDDSImage image;
// GLuint texobj;
//
// image.load("compressed.dds");
//
// glGenTextures(1, &texobj);
// glEnable(GL_TEXTURE_2D);
// glBindTexture(GL_TEXTURE_2D, texobj);
//
// glCompressedTexImage2DARB(GL_TEXTURE_2D, 0, image.get_format(),
// image.get_width(), image.get_height(), 0, image.get_size(),
// image);
//
// for (int i = 0; i < image.get_num_mipmaps(); i++)
// {
// glCompressedTexImage2DARB(GL_TEXTURE_2D, i+1, image.get_format(),
// image.get_mipmap(i).get_width(), image.get_mipmap(i).get_height(), 0,
// image.get_mipmap(i).get_size(), image.get_mipmap(i));
// }
//
// Loading an uncompressed texture:
//
// CDDSImage image;
// GLuint texobj;
//
// image.load("uncompressed.dds");
//
// glGenTextures(1, &texobj);
// glEnable(GL_TEXTURE_2D);
// glBindTexture(GL_TEXTURE_2D, texobj);
//
// glTexImage2D(GL_TEXTURE_2D, 0, image.get_components(), image.get_width(),
// image.get_height(), 0, image.get_format(), GL_UNSIGNED_BYTE, image);
//
// for (int i = 0; i < image.get_num_mipmaps(); i++)
// {
// glTexImage2D(GL_TEXTURE_2D, i+1, image.get_components(),
// image.get_mipmap(i).get_width(), image.get_mipmap(i).get_height(),
// 0, image.get_format(), GL_UNSIGNED_BYTE, image.get_mipmap(i));
// }
//
//
// Loading an uncompressed cubemap texture:
//
// CDDSImage image;
// GLuint texobj;
// GLenum target;
//
// image.load("cubemap.dds");
//
// glGenTextures(1, &texobj);
// glEnable(GL_TEXTURE_CUBE_MAP_ARB);
// glBindTexture(GL_TEXTURE_CUBE_MAP_ARB, texobj);
//
// for (int n = 0; n < 6; n++)
// {
// target = GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB+n;
//
// glTexImage2D(target, 0, image.get_components(), image[n].get_width(),
// image[n].get_height(), 0, image.get_format(), GL_UNSIGNED_BYTE,
// image[n]);
//
// for (int i = 0; i < image[n].get_num_mipmaps(); i++)
// {
// glTexImage2D(target, i+1, image.get_components(),
// image[n].get_mipmap(i).get_width(),
// image[n].get_mipmap(i).get_height(), 0,
// image.get_format(), GL_UNSIGNED_BYTE, image[n].get_mipmap(i));
// }
// }
//
//
// Loading a volume texture:
//
// CDDSImage image;
// GLuint texobj;
//
// image.load("volume.dds");
//
// glGenTextures(1, &texobj);
// glEnable(GL_TEXTURE_3D);
// glBindTexture(GL_TEXTURE_3D, texobj);
//
// PFNGLTEXIMAGE3DPROC glTexImage3D;
// glTexImage3D(GL_TEXTURE_3D, 0, image.get_components(), image.get_width(),
// image.get_height(), image.get_depth(), 0, image.get_format(),
// GL_UNSIGNED_BYTE, image);
//
// for (int i = 0; i < image.get_num_mipmaps(); i++)
// {
// glTexImage3D(GL_TEXTURE_3D, i+1, image.get_components(),
// image[0].get_mipmap(i).get_width(),
// image[0].get_mipmap(i).get_height(),
// image[0].get_mipmap(i).get_depth(), 0, image.get_format(),
// GL_UNSIGNED_BYTE, image[0].get_mipmap(i));
// }
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "nv_dds.h"
#if defined(WIN32)
#include <windows.h>
#define GET_EXT_POINTER(name, type) \
name = (type)wglGetProcAddress(#name)
#elif defined(LINUX)
#include <GL/glx.h>
extern "C" void(*glXGetProcAddressARB(const GLubyte *procName))(void);
#define useGetProcAddress ::glXGetProcAddressARB
# define GET_EXT_POINTER(name, type) \
name = (type)useGetProcAddress((const GLubyte*)#name)
#else // MACOS
#define GET_EXT_POINTER(glname, gltype)
#include <OpenGL/gl.h>
#endif
using namespace std;
using namespace nv_dds;
// static function pointers for uploading 3D textures and compressed 1D, 2D
// and 3D textures.
#if defined(WIN32) || defined(LINUX)
PFNGLTEXIMAGE3DEXTPROC CDDSImage::glTexImage3D = NULL;
PFNGLCOMPRESSEDTEXIMAGE1DARBPROC CDDSImage::glCompressedTexImage1DARB = NULL;
PFNGLCOMPRESSEDTEXIMAGE2DARBPROC CDDSImage::glCompressedTexImage2DARB = NULL;
PFNGLCOMPRESSEDTEXIMAGE3DARBPROC CDDSImage::glCompressedTexImage3DARB = NULL;
#endif
// CDDSImage public functions
// default constructor
CDDSImage::CDDSImage()
: format(0),
components(0),
compressed(false),
cubemap(false),
volume(false),
valid(false)
{
}
CDDSImage::~CDDSImage()
{
}
// loads DDS image
//
// filename - fully qualified name of DDS image
// flipImage - specifies whether image is flipped on load, default is true
bool CDDSImage::load(string filename, bool flipImage)
{
DDS_HEADER ddsh;
char filecode[4];
FILE *fp;
int width, height, depth;
int (CDDSImage::*sizefunc)(int, int);
// clear any previously loaded images
clear();
// open file
fp = fopen(filename.data(), "rb");
if (fp == NULL)
return false;
// read in file marker, make sure its a DDS file
fread(filecode, 1, 4, fp);
if (strncmp(filecode, "DDS ", 4) != 0)
{
fclose(fp);
return false;
}
// read in DDS header
fread(&ddsh, sizeof(ddsh), 1, fp);
swap_endian(&ddsh.dwSize);
swap_endian(&ddsh.dwFlags);
swap_endian(&ddsh.dwHeight);
swap_endian(&ddsh.dwWidth);
swap_endian(&ddsh.dwPitchOrLinearSize);
swap_endian(&ddsh.dwMipMapCount);
swap_endian(&ddsh.ddspf.dwSize);
swap_endian(&ddsh.ddspf.dwFlags);
swap_endian(&ddsh.ddspf.dwFourCC);
swap_endian(&ddsh.ddspf.dwRGBBitCount);
swap_endian(&ddsh.dwCaps1);
swap_endian(&ddsh.dwCaps2);
// check if image is a cubempa
if (ddsh.dwCaps2 & DDS_CUBEMAP)
cubemap = true;
// check if image is a volume texture
if ((ddsh.dwCaps2 & DDS_VOLUME) && (ddsh.dwDepth > 0))
volume = true;
// figure out what the image format is
if (ddsh.ddspf.dwFlags & DDS_FOURCC)
{
switch(ddsh.ddspf.dwFourCC)
{
case FOURCC_DXT1:
format = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
components = 3;
compressed = true;
break;
case FOURCC_DXT3:
format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
components = 4;
compressed = true;
break;
case FOURCC_DXT5:
format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
components = 4;
compressed = true;
break;
default:
fclose(fp);
return false;
}
}
else if (ddsh.ddspf.dwFlags == DDS_RGBA && ddsh.ddspf.dwRGBBitCount == 32)
{
format = GL_BGRA_EXT;
compressed = false;
components = 4;
}
else if (ddsh.ddspf.dwFlags == DDS_RGB && ddsh.ddspf.dwRGBBitCount == 32)
{
format = GL_BGRA_EXT;
compressed = false;
components = 4;
}
else if (ddsh.ddspf.dwFlags == DDS_RGB && ddsh.ddspf.dwRGBBitCount == 24)
{
format = GL_BGR_EXT;
compressed = false;
components = 3;
}
else if (ddsh.ddspf.dwRGBBitCount == 8)
{
format = GL_LUMINANCE;
compressed = false;
components = 1;
}
else
{
fclose(fp);
return false;
}
// store primary surface width/height/depth
width = ddsh.dwWidth;
height = ddsh.dwHeight;
depth = clamp_size(ddsh.dwDepth); // set to 1 if 0
// use correct size calculation function depending on whether image is
// compressed
sizefunc = (compressed ? &CDDSImage::size_dxtc : &CDDSImage::size_rgb);
// load all surfaces for the image (6 surfaces for cubemaps)
for (int n = 0; n < (cubemap ? 6 : 1); n++)
{
int size;
// calculate surface size
size = (this->*sizefunc)(width, height)*depth;
// load surface
CTexture img(width, height, depth, size);
fread(img, 1, img.size, fp);
align_memory(&img);
if (!cubemap && flipImage)
flip(img, img.width, img.height, img.depth, img.size);
int w = clamp_size(width >> 1);
int h = clamp_size(height >> 1);
int d = clamp_size(depth >> 1);
// store number of mipmaps
int numMipmaps = ddsh.dwMipMapCount;
// number of mipmaps in file includes main surface so decrease count
// by one
if (numMipmaps != 0)
numMipmaps--;
// load all mipmaps for current surface
for (int i = 0; i < numMipmaps && (w || h); i++)
{
// calculate mipmap size
size = (this->*sizefunc)(w, h)*d;
CSurface mipmap(w, h, d, size);
fread(mipmap, 1, mipmap.size, fp);
if (!cubemap && flipImage)
{
flip(mipmap, mipmap.width, mipmap.height, mipmap.depth,
mipmap.size);
}
img.mipmaps.push_back(mipmap);
// shrink to next power of 2
w = clamp_size(w >> 1);
h = clamp_size(h >> 1);
d = clamp_size(d >> 1);
}
images.push_back(img);
}
// swap cubemaps on y axis (since image is flipped in OGL)
if (cubemap && flipImage)
{
CTexture tmp;
tmp = images[3];
images[3] = images[2];
images[2] = tmp;
}
fclose(fp);
valid = true;
return true;
}
// free image memory
void CDDSImage::clear()
{
components = 0;
format = 0;
compressed = false;
cubemap = false;
volume = false;
valid = false;
images.clear();
}
// returns individual texture when multiple textures are loaded (as is the case
// with volume textures and cubemaps)
CTexture &CDDSImage::operator[](int index)
{
// make sure an image has been loaded
assert(valid);
assert(index < (int)images.size());
return images[index];
}
// returns pointer to main image
CDDSImage::operator char*()
{
assert(valid);
return images[0];
}
// uploads a compressed/uncompressed 1D texture
bool CDDSImage::upload_texture1D()
{
assert(valid);
assert(images[0].height == 1);
assert(images[0].width > 0);
assert(images[0]);
if (compressed)
{
#if defined(WIN32) || defined(LINUX)
// get function pointer if needed
if (glCompressedTexImage1DARB == NULL)
{
GET_EXT_POINTER(glCompressedTexImage1DARB,
PFNGLCOMPRESSEDTEXIMAGE1DARBPROC);
}
if (glCompressedTexImage1DARB == NULL)
return false;
glCompressedTexImage1DARB(GL_TEXTURE_1D, 0, format,
images[0].width, 0, images[0].size,
images[0]);
// load all mipmaps
unsigned int numMipMaps = (unsigned int)images[0].mipmaps.size();
if( numMipMaps)
{
for (unsigned int i = 0; i < numMipMaps; i++)
{
glCompressedTexImage1DARB(GL_TEXTURE_1D, i+1, format,
images[0].mipmaps[i].width, 0,
images[0].mipmaps[i].size,
images[0].mipmaps[i]);
}
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_BASE_LEVEL, 0 );
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAX_LEVEL, numMipMaps);
}
#else
glCompressedTexImage1D(GL_TEXTURE_1D, 0, format,
images[0].width, 0, images[0].size,
images[0]);
// load all mipmaps
unsigned int numMipMaps = (unsigned int)images[0].mipmaps.size();
if( numMipMaps)
{
for (unsigned int i = 0; i < numMipMaps; i++)
{
glCompressedTexImage1D(GL_TEXTURE_1D, i+1, format,
images[0].mipmaps[i].width, 0,
images[0].mipmaps[i].size,
images[0].mipmaps[i]);
}
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_BASE_LEVEL, 0 );
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAX_LEVEL, numMipMaps);
}
#endif
}
else
{
glTexImage1D(GL_TEXTURE_1D, 0, format, images[0].width, 0,
format, GL_UNSIGNED_BYTE, images[0]);
// load all mipmaps
unsigned int numMipMaps = (unsigned int)images[0].mipmaps.size();
if( numMipMaps)
{
for (unsigned int i = 0; i < numMipMaps; i++)
{
glTexImage1D(GL_TEXTURE_1D, i+1, components,
images[0].mipmaps[i].width, 0, format,
GL_UNSIGNED_BYTE, images[0].mipmaps[i]);
}
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_BASE_LEVEL, 0 );
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAX_LEVEL, numMipMaps);
}
}
return true;
}
// uploads a compressed/uncompressed 2D texture
//
// imageIndex - allows you to optionally specify other loaded surfaces for 2D
// textures such as a face in a cubemap or a slice in a volume
//
// default: 0
//
// target - allows you to optionally specify a different texture target for
// the 2D texture such as a specific face of a cubemap
//
// default: GL_TEXTURE_2D
bool CDDSImage::upload_texture2D(int imageIndex, GLenum target)
{
assert(valid);
assert(imageIndex >= 0);
assert(imageIndex < (int)images.size());
assert(images[imageIndex].height > 0);
assert(images[imageIndex].width > 0);
assert(images[imageIndex]);
assert(target == GL_TEXTURE_2D ||
(target >= GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB &&
target <= GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB));
if (compressed)
{
#if defined(WIN32) || defined(LINUX)
// load function pointer if needed
if (glCompressedTexImage2DARB == NULL)
{
GET_EXT_POINTER(glCompressedTexImage2DARB,
PFNGLCOMPRESSEDTEXIMAGE2DARBPROC);
}
if (glCompressedTexImage2DARB == NULL)
return false;
glCompressedTexImage2DARB(target, 0, format,
images[imageIndex].width, images[imageIndex].height, 0,
images[imageIndex].size, images[imageIndex]);
// load all mipmaps
unsigned int numMipMaps = (unsigned int)images[imageIndex].mipmaps.size();
if( numMipMaps)
{
for (unsigned int i = 0; i < numMipMaps; i++)
{
glCompressedTexImage2DARB(target, i+1, format,
images[imageIndex].mipmaps[i].width,
images[imageIndex].mipmaps[i].height, 0,
images[imageIndex].mipmaps[i].size,
images[imageIndex].mipmaps[i]);
}
glTexParameteri(target, GL_TEXTURE_BASE_LEVEL, 0 );
glTexParameteri(target, GL_TEXTURE_MAX_LEVEL, numMipMaps);
}
#else
glCompressedTexImage2D(target, 0, format,
images[imageIndex].width, images[imageIndex].height, 0,
images[imageIndex].size, images[imageIndex]);
// load all mipmaps
unsigned int numMipMaps = (unsigned int)images[imageIndex].mipmaps.size();
if( numMipMaps)
{
for (unsigned int i = 0; i < numMipMaps; i++)
{
glCompressedTexImage2D(target, i+1, format,
images[imageIndex].mipmaps[i].width,
images[imageIndex].mipmaps[i].height, 0,
images[imageIndex].mipmaps[i].size,
images[imageIndex].mipmaps[i]);
}
glTexParameteri(target, GL_TEXTURE_BASE_LEVEL, 0 );
glTexParameteri(target, GL_TEXTURE_MAX_LEVEL, numMipMaps);
}
#endif
}
else
{
glTexImage2D(target, 0, components, images[imageIndex].width,
images[imageIndex].height, 0, format, GL_UNSIGNED_BYTE,
images[imageIndex]);
// load all mipmaps
unsigned int numMipMaps = (unsigned int)images[imageIndex].mipmaps.size();
if( numMipMaps)
{
for (unsigned int i = 0; i < numMipMaps; i++)
{
glTexImage2D(target, i+1, components,
images[imageIndex].mipmaps[i].width,
images[imageIndex].mipmaps[i].height, 0, format,
GL_UNSIGNED_BYTE, images[imageIndex].mipmaps[i]);
}
glTexParameteri(target, GL_TEXTURE_BASE_LEVEL, 0 );
glTexParameteri(target, GL_TEXTURE_MAX_LEVEL, numMipMaps);
}
}
return true;
}
#ifdef GL_NV_texture_rectangle
bool CDDSImage::upload_textureRectangle()
{
assert(valid);
assert(images.size() >= 1);
if (!upload_texture2D(0, GL_TEXTURE_RECTANGLE_NV))
return false;
return true;
}
#endif
// uploads a compressed/uncompressed cubemap texture
bool CDDSImage::upload_textureCubemap()
{
assert(valid);
assert(cubemap);
assert(images.size() == 6);
GLenum target;
// loop through cubemap faces and load them as 2D textures
for (int n = 0; n < 6; n++)
{
// specify cubemap face
target = GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB+n;
if (!upload_texture2D(n, target))
return false;
}
return true;
}
// uploads a compressed/uncompressed 3D texture
bool CDDSImage::upload_texture3D()
{
assert(valid);
assert(volume);
assert(images[0].depth >= 1);
if (compressed)
{
#if defined(WIN32) || defined(LINUX)
// retrieve function pointer if needed
if (glCompressedTexImage3DARB == NULL)
{
GET_EXT_POINTER(glCompressedTexImage3DARB,
PFNGLCOMPRESSEDTEXIMAGE3DARBPROC);
}
if (glCompressedTexImage3DARB == NULL)
return false;
glCompressedTexImage3DARB(GL_TEXTURE_3D, 0, format, images[0].width,
images[0].height, images[0].depth, 0, images[0].size, images[0]);
// load all mipmap volumes
unsigned int numMipMaps = (unsigned int)images[0].mipmaps.size();
if( numMipMaps)
{
for (unsigned int i = 0; i < numMipMaps; i++)
{
glCompressedTexImage3DARB(GL_TEXTURE_3D, i+1, format,
images[0].mipmaps[i].width, images[0].mipmaps[i].height,
images[0].depth, 0, images[0].mipmaps[i].size,
images[0].mipmaps[i]);
}
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_BASE_LEVEL, 0 );
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAX_LEVEL, numMipMaps);
}
#else
glCompressedTexImage3D(GL_TEXTURE_3D, 0, format, images[0].width,
images[0].height, images[0].depth, 0, images[0].size, images[0]);
// load all mipmap volumes
unsigned int numMipMaps = (unsigned int)images[0].mipmaps.size();
if( numMipMaps)
{
for (unsigned int i = 0; i < numMipMaps; i++)
{
glCompressedTexImage3D(GL_TEXTURE_3D, i+1, format,
images[0].mipmaps[i].width, images[0].mipmaps[i].height,
images[0].depth, 0, images[0].mipmaps[i].size,
images[0].mipmaps[i]);
}
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_BASE_LEVEL, 0 );
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAX_LEVEL, numMipMaps);
}
#endif
}
else
{
#if defined(WIN32) || defined(LINUX)
// retrieve function pointer if needed
if (glTexImage3D == NULL)
{
GET_EXT_POINTER(glTexImage3D, PFNGLTEXIMAGE3DEXTPROC);
}
if (glTexImage3D == NULL)
return false;
#endif
glTexImage3D(GL_TEXTURE_3D, 0, components, images[0].width,
images[0].height, images[0].depth, 0, format, GL_UNSIGNED_BYTE,
images[0]);
// load all mipmap volumes
unsigned int numMipMaps = (unsigned int)images[0].mipmaps.size();
if( numMipMaps)
{
for (unsigned int i = 0; i < numMipMaps; i++)
{
glTexImage3D(GL_TEXTURE_3D, i+1, components,
images[0].mipmaps[i].width, images[0].mipmaps[i].height,
images[0].mipmaps[i].depth, 0, format, GL_UNSIGNED_BYTE,
images[0].mipmaps[i]);
}
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_BASE_LEVEL, 0 );
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAX_LEVEL, numMipMaps);
}
}
return true;
}
// clamps input size to [1-size]
inline int CDDSImage::clamp_size(int size)
{
if (size <= 0)
size = 1;
return size;
}
// CDDSImage private functions
// calculates 4-byte aligned width of image
inline int CDDSImage::get_line_width(int width, int bpp)
{
return ((width * bpp + 31) & -32) >> 3;
}
// calculates size of DXTC texture in bytes
inline int CDDSImage::size_dxtc(int width, int height)
{
return ((width+3)/4)*((height+3)/4)*
(format == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT ? 8 : 16);
}
// calculates size of uncompressed RGB texture in bytes
inline int CDDSImage::size_rgb(int width, int height)
{
return width*height*components;
}
// Swap the bytes in a 32 bit value
inline void CDDSImage::swap_endian(void *val)
{
#ifdef MACOS
unsigned int *ival = (unsigned int *)val;
*ival = ((*ival >> 24) & 0x000000ff) |
((*ival >> 8) & 0x0000ff00) |
((*ival << 8) & 0x00ff0000) |
((*ival << 24) & 0xff000000);
#endif
}
// align to 4 byte boundary (add pad bytes to end of each line in the image)
void CDDSImage::align_memory(CTexture *surface)
{
// don't bother with compressed images, volume textures, or cubemaps
if (compressed || volume || cubemap)
return;
// calculate new image size
int linesize = get_line_width(surface->width, components*8);
int imagesize = linesize*surface->height;
// exit if already aligned
if (surface->size == imagesize)
return;
// create new image of new size
CTexture newSurface(surface->width, surface->height, surface->depth,
imagesize);
// add pad bytes to end of each line
char *srcimage = (char*)*surface;
char *dstimage = (char*)newSurface;
for (int n = 0; n < surface->depth; n++)
{
char *curline = srcimage;
char *newline = dstimage;
int imsize = surface->size / surface->depth;
int lnsize = imsize / surface->height;
for (int i = 0; i < surface->height; i++)
{
memcpy(newline, curline, lnsize);
newline += linesize;
curline += lnsize;
}
}
// save padded image
*surface = newSurface;
}
// flip image around X axis
void CDDSImage::flip(char *image, int width, int height, int depth, int size)
{
int linesize;
int offset;
if (!compressed)
{
assert(depth > 0);
int imagesize = size/depth;
linesize = imagesize / height;
for (int n = 0; n < depth; n++)
{
offset = imagesize*n;
char *top = image + offset;
char *bottom = top + (imagesize-linesize);
for (int i = 0; i < (height >> 1); i++)
{
swap(bottom, top, linesize);
top += linesize;
bottom -= linesize;
}
}
}
else
{
void (CDDSImage::*flipblocks)(DXTColBlock*, int);
int xblocks = width / 4;
int yblocks = height / 4;
int blocksize;
switch (format)
{
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
blocksize = 8;
flipblocks = &CDDSImage::flip_blocks_dxtc1;
break;
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
blocksize = 16;
flipblocks = &CDDSImage::flip_blocks_dxtc3;
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
blocksize = 16;
flipblocks = &CDDSImage::flip_blocks_dxtc5;
break;
default:
return;
}
linesize = xblocks * blocksize;
DXTColBlock *top;
DXTColBlock *bottom;
for (int j = 0; j < (yblocks >> 1); j++)
{
top = (DXTColBlock*)(image + j * linesize);
bottom = (DXTColBlock*)(image + (((yblocks-j)-1) * linesize));
(this->*flipblocks)(top, xblocks);
(this->*flipblocks)(bottom, xblocks);
swap(bottom, top, linesize);
}
}
}
// swap to sections of memory
void CDDSImage::swap(void *byte1, void *byte2, int size)
{
unsigned char *tmp = new unsigned char[size];
memcpy(tmp, byte1, size);
memcpy(byte1, byte2, size);
memcpy(byte2, tmp, size);
delete [] tmp;
}
// flip a DXT1 color block
void CDDSImage::flip_blocks_dxtc1(DXTColBlock *line, int numBlocks)
{
DXTColBlock *curblock = line;
for (int i = 0; i < numBlocks; i++)
{
swap(&curblock->row[0], &curblock->row[3], sizeof(unsigned char));
swap(&curblock->row[1], &curblock->row[2], sizeof(unsigned char));
curblock++;
}
}
// flip a DXT3 color block
void CDDSImage::flip_blocks_dxtc3(DXTColBlock *line, int numBlocks)
{
DXTColBlock *curblock = line;
DXT3AlphaBlock *alphablock;
for (int i = 0; i < numBlocks; i++)
{
alphablock = (DXT3AlphaBlock*)curblock;
swap(&alphablock->row[0], &alphablock->row[3], sizeof(unsigned short));
swap(&alphablock->row[1], &alphablock->row[2], sizeof(unsigned short));
curblock++;
swap(&curblock->row[0], &curblock->row[3], sizeof(unsigned char));
swap(&curblock->row[1], &curblock->row[2], sizeof(unsigned char));
curblock++;
}
}
// flip a DXT5 alpha block
void CDDSImage::flip_dxt5_alpha(DXT5AlphaBlock *block)
{
unsigned char gBits[4][4];
const unsigned int mask = 0x00000007; // bits = 00 00 01 11
unsigned int bits = 0;
memcpy(&bits, &block->row[0], sizeof(unsigned char) * 3);
gBits[0][0] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[0][1] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[0][2] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[0][3] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[1][0] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[1][1] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[1][2] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[1][3] = (unsigned char)(bits & mask);
bits = 0;
memcpy(&bits, &block->row[3], sizeof(unsigned char) * 3);
gBits[2][0] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[2][1] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[2][2] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[2][3] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[3][0] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[3][1] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[3][2] = (unsigned char)(bits & mask);
bits >>= 3;
gBits[3][3] = (unsigned char)(bits & mask);
// clear existing alpha bits
memset(block->row, 0, sizeof(unsigned char) * 6);
unsigned int *pBits = ((unsigned int*) &(block->row[0]));
*pBits = *pBits | (gBits[3][0] << 0);
*pBits = *pBits | (gBits[3][1] << 3);
*pBits = *pBits | (gBits[3][2] << 6);
*pBits = *pBits | (gBits[3][3] << 9);
*pBits = *pBits | (gBits[2][0] << 12);
*pBits = *pBits | (gBits[2][1] << 15);
*pBits = *pBits | (gBits[2][2] << 18);
*pBits = *pBits | (gBits[2][3] << 21);
pBits = ((unsigned int*) &(block->row[3]));
*pBits = *pBits | (gBits[1][0] << 0);
*pBits = *pBits | (gBits[1][1] << 3);
*pBits = *pBits | (gBits[1][2] << 6);
*pBits = *pBits | (gBits[1][3] << 9);
*pBits = *pBits | (gBits[0][0] << 12);
*pBits = *pBits | (gBits[0][1] << 15);
*pBits = *pBits | (gBits[0][2] << 18);
*pBits = *pBits | (gBits[0][3] << 21);
}
// flip a DXT5 color block
void CDDSImage::flip_blocks_dxtc5(DXTColBlock *line, int numBlocks)
{
DXTColBlock *curblock = line;
DXT5AlphaBlock *alphablock;
for (int i = 0; i < numBlocks; i++)
{
alphablock = (DXT5AlphaBlock*)curblock;
flip_dxt5_alpha(alphablock);
curblock++;
swap(&curblock->row[0], &curblock->row[3], sizeof(unsigned char));
swap(&curblock->row[1], &curblock->row[2], sizeof(unsigned char));
curblock++;
}
}
// CTexture implementation
// default constructor
CTexture::CTexture()
: CSurface() // initialize base class part
{
}
// creates an empty texture
CTexture::CTexture(int w, int h, int d, int imgSize)
: CSurface(w, h, d, imgSize) // initialize base class part
{
}
// copy constructor
CTexture::CTexture(const CTexture &copy)
: CSurface(copy)
{
for (unsigned int i = 0; i < copy.mipmaps.size(); i++)
mipmaps.push_back(copy.mipmaps[i]);
}
// assignment operator
CTexture &CTexture::operator= (const CTexture &rhs)
{
if (this != &rhs)
{
CSurface::operator = (rhs);
mipmaps.clear();
for (unsigned int i = 0; i < rhs.mipmaps.size(); i++)
{
mipmaps.push_back(rhs.mipmaps[i]);
}
}
return *this;
}
// clean up texture memory
CTexture::~CTexture()
{
mipmaps.clear();
}
// CSurface implementation
// default constructor
CSurface::CSurface()
: width(0),
height(0),
depth(0),
size(0),
pixels(NULL)
{
}
// creates an empty image
CSurface::CSurface(int w, int h, int d, int imgsize)
{
pixels = NULL;
create(w, h, d, imgsize);
}
// copy constructor
CSurface::CSurface(const CSurface &copy)
: width(0),
height(0),
depth(0),
size(0),
pixels(NULL)
{
if (copy.pixels)
{
size = copy.size;
width = copy.width;
height = copy.height;
depth = copy.depth;
pixels = new char[size];
memcpy(pixels, copy.pixels, copy.size);
}
}
// assignment operator
CSurface &CSurface::operator= (const CSurface &rhs)
{
if (this != &rhs)
{
clear();
if (rhs.pixels)
{
size = rhs.size;
width = rhs.width;
height = rhs.height;
depth = rhs.depth;
pixels = new char[size];
memcpy(pixels, rhs.pixels, size);
}
}
return *this;
}
// clean up image memory
CSurface::~CSurface()
{
clear();
}
// returns a pointer to image
CSurface::operator char*()
{
return pixels;
}
// creates an empty image
void CSurface::create(int w, int h, int d, int imgsize)
{
clear();
width = w;
height = h;
depth = d;
size = imgsize;
pixels = new char[imgsize];
}
// free surface memory
void CSurface::clear()
{
delete [] pixels;
pixels = NULL;
}