流体“动力学模拟”(Dynamic Simulation)属性

若要模拟流体特性的流,该特性的“内容方法”(Contents Method)必须设定为“动态栅格”(Dynamic Grid)“速度”(Velocity)不能为“禁用”(Off)。在模拟期间,使用“Navier-Stokes”流体动力学方程式(解算器)求解容器中的值,并将这些值替换为新值以创建流体运动。使用本节中的属性定义解算器使用的信息。

重力(Gravity)

“重力”(Gravity)设置是内置的重力常量,它模拟发生模拟的世界中质量的地球引力。负值会导致向下的拉动(相对于世界坐标系)。

如果“重力”(Gravity)为零,则“密度浮力”(Density Buoyancy)“温度浮力”(Temperature Buoyancy)没有效果

粘度(Viscosity)

“粘度”(Viscosity)表示流体流动的阻力,或材质的厚度及非液态程度。该值很高时,流体像焦油一样流动。该值很小时,流体像水一样流动。

“粘度”(Viscosity)为 1 时,材质“雷诺数”(Reynolds Number)为 0;“粘度”为 0 时,“雷诺数”(Reynolds Number)为 10000。“雷诺数”(Reynolds Number)是用于解算流体动力学方程式的与流体粘度成比例的参数。)

摩擦力(Friction)

定义在“速度”(Velocity)解算中使用的内部摩擦力。

阻尼(Damp)

在每个时间步上定义阻尼接近零的“速度”(Velocity)分散量。值为 1 时,流完全被抑制。当边界处于开放状态以防止强风逐渐增大并导致不稳定性时,少量的阻尼可能会很有用。

解算器(Solver)

选择下列选项之一:

无(None)

不使用解算器。

Navier-Stokes

使用“Navier-Stokes”解算器(最适合流体、空气以有流产生漩涡但不向外展开或向内压缩的其他情况)

弹簧网格(Spring Mesh)

使用波浪传播模拟器(最适合波浪中的上下前后运动)。

高细节解算(High Detail Solve)

此选项可减少模拟期间密度、速度和其他属性的扩散。例如,它可以在不增加分辨率的情况下使流体模拟看起来更详细,并允许模拟翻滚的漩涡。“高细节解算”(High Detail Solve)非常适合用于创建爆炸、翻滚的云和巨浪似的烟雾等效果。

禁用(Off)

模拟的运行速度更快,但随着模拟的进行,会有大量密度和速度的扩散。

使用“高细节解算”(High Detail Solve)时出现的某些瑕疵可以使用与“张力”(Tension)对应的“密度”(Density)“温度”(Temperature)去除。

除速度之外的所有栅格(All Grids Except Velocity)

将附加解算步骤应用于除速度之外的所有栅格,这样做需要的模拟计算时间并不比“高细节解算”(High Detail Solve)“禁用”(Off)时需要的时间多很多。

仅速度(Velocity Only)

只有速度栅格值将应用附加解算步骤。此选项可避免由于密度栅格上的高细节所产生的某些瑕疵。(使用与栅格插值对应的“Hermite”选项 - 在速度较慢时可以产生高质量的结果。)

所有栅格(All grids)

计算速度以及将速度应用于其余栅格时,要首先应用附加解算步骤。流中会有更多的细节,从而显著提高模拟的逼真性。由于传播速度比传播标量栅格值(例如密度)需要进行更多的计算,因此使用此选项会使模拟计算时间加倍。

子步(Substeps)

指定解算器在每帧执行计算的次数。“子步”(Substeps)对于改善快速移动的流体、具有高密度栅格的流体以及使用“高细节解算”(High Detail Solve)时的流体的稳定性和模拟结果非常有用。

解算器质量(Solver Quality)

提高“解算器质量”(Solver Quality)会增加解算器计算流体流的不可压缩性所使用的步骤数。这种计算称为“泊松”(Poisson)解算,通常是解算中计算最密集的部分。

降低“解算器质量”(Solver Quality)会导致具有更多扩散的不太详细的模拟。不过,可以通过降低“解算器质量”(Solver Quality)对流体进行某种程度的压缩,尤其是在“高细节解算”(High Detail Solve)处于禁用状态且“向前平流”(Forward Advection)处于启用状态时。在效果中使用“自吸引”(Self Attraction)“渐变力”(Gradient Force)时,向流体添加压缩功能非常有用。请参见自吸引和排斥

栅格插值器(Grid Interpolator)

选择要使用哪种插值算法以便从体素栅格内的点检索值。

线性(linear)

对值进行线性插值。这是两种方法中较快的方法。

Hermite

使用 Hermite 曲线对流体进行插值。此方法所导致的扩散少于线性方法,但会使模拟运行多次且速度较慢,尤其是流体与几何体碰撞时。如果需要解算器计算边界上的摩擦力,则使用 Hermite。(应将此选项与“高细节解算”(High Detail Solve)对应的“仅速度”(Velocity Only)方法结合使用 - 速度较慢时,可以产生高质量的结果。不要将此选项与“除速度之外的所有栅格”(All Grids Except Velocity)“所有栅格”(All Grids)选项结合使用。)

向前平流(Forward Advection)

“向前平流”(Forward Advection)处于启用状态时,使用向前推动密度穿过栅格的质量守恒正向传播技术解算“密度”(Density)“温度”(Temperature)“燃料”(Fuel)栅格。使用“向前平流”(Forward Advection)时不计算“速度”(Velocity)栅格。

默认的解算方法使用反向传播技术,该技术从周围的体素中将密度拉进体素。

使用“高细节解算”(High Detail Solve)时,通过“向前平流”(Forward Advection)解算的流体效果可以产生较少的瑕疵,并导致比默认解算方法更少的密度扩散。“向前平流”(Forward Advection)还可以解决密度在体素中保持静态的情况。

注:

如果“解算器质量”(Solver Quality)设定为较低的值,则默认解算方法(禁用“向前平流”(Forward Advection))依赖于流体流和漫反射的不可压缩性。“向前平流”(Forward Advection)处于启用状态时,流体不存在此问题,并使其对具有压缩效果的模拟起到帮助作用。

开始帧(Start Frame)

设定在哪个帧之后开始流模拟。默认值为 1.0。在该帧之前不会为此对象播放任何内容。您可以使用此属性延迟字段对流体所起的作用,直到到达所选的帧。

注:

如果更改“时间”(Time)单位设置(“窗口 > 设置/首选项 > 首选项”(Windows > Settings/Preferences > Preferences)),必须将“开始帧”(Start Frame)设置为正确的初始值,以便 Maya 再次计算开始时间。

模拟速率比例(Simulation Rate Scale)

缩放在发射和解算中使用的时间步。

禁用求值(Disable Evaluation)

启用此选项以便在交互式播放期间禁用解算。如果存在流体缓存,Maya 会播放缓存中的模拟。

保持质量(Conserve Mass)

启用此选项以便在解算期间更新“密度”(Density)值时保持质量。

使用碰撞(Use Collisions)

禁用此选项以便在容器中禁用流体与碰撞几何体的碰撞。

使用发射(Use Emission)

禁用此选项以便在模拟期间忽略所有已连接的流体发射器。

使用场(Use Fields)

禁用此选项以便在模拟期间忽略所有已连接的外部场。

发射的子步(Emit In Substeps)

如果启用,将每个子步(而不是每步)计算一次流体发射。启用“发射的子步”(Emit In Substeps)对于具有较高发射速度的效果(例如在爆炸中)很有用。