Basic Geometric Calculation for Bevel Gears

Input Parameters

Gear type - according to the position of root and head cone

Gear ratio and tooth numbers

Pressure angle (the angle of tool profile) α t

Helix angle β m

Axis angle Σ

Tangential module on outer cone met (for metric calculation)

Tangential Diametral Pitch on outer cone Pet (for English units)

Note: Module and Diametral Pitch are reciprocal values.

Unit addendum height ha *

Unit clearance c *

Unit dedendum fillet r f *

Facewidths b 1 , b 2

Unit correction x = x 1 = - x 2

Unit change of tooth thickness x t = x t1 = - x t2

Auxiliary Geometric Calculations

Distribution of Unit Corrections for Single Gears

Design According to the Strength Calculation

Design of Face Width

Calculation of Maximum Dedendum Filleting

Calculated parameters

 

Normal Pressure Angle in Middle Plane

 

tg α nm = tg α t cos β m

Pitch angle

 

Outside pitch diameter

 

d e1,2 = m et z 1,2

Outside length of surface line on pitch cone

 

Length of surface line on the mean cone

 

R m = R e - 0.5 b

Relative face width

 

Tangential module on the mean cone

 

Normal module on the mean cone

 

m mn = m mt cos β m

Mean pitch diameter

 

d m1,2 = m mt z 1,2

Equivalent number of teeth

 

Ekvivalent pitch diameter

 

Ekvivalent base diameter

 

d vb1,2 = d v1,2 cos α t

Ekvivalent outside diameter

 

d va1,2 = d v1,2 + 2 h ae1,2 m mt / m et

Ekvivalent center distance

 

a v = 0.5 (d v1 + d v2 )

Virtual gear ratio

 

Virtual number of teeth

 

Virtual pitch diameter

 

Virtual base diameter

 

d bn1,2 = d n1,2 cos α t

Virtual outside diameter

 

d an1,2 = d n1,2 + 2 h ae1,2 m mt / m et

Virtual helix angle at the base cylinder

 

sin β b = sin β m cos α nm

Virtual center distance

 

a n = 0.5 (d n1 + d n2 )

Dedendum reduction

 

k 1,2 = 0.02 (17 - z n1,2 )

for k > 0 the dedendum shortening is done

Addendum

 

h ae1,2 = m et (h a * + x 1,2 - k 1,2 )

Dedendum

 

hf e1,2 = m et (h a * + c * - x 1,2 )

Outside diameter

 

d ae1,2 = d e1,2 + 2ha e1,2 cos δ 1,2

Root diameter

 

d fe1,2 = d e1,2 - 2 hfe1,2 cos δ 1,2 )

Outside diameter at small end

 

d ai1,2 = d ae1,2 (1 - φ R )

Vertex distance

 

A 1,2 = R e cos δ 1,2 - h ae1,2 sin δ 1,2

Outside bevel angle

 

Cutting angle

 

Tooth thickness (measured normally on the pitch diameter)

 

Chordal facewidth (normal)

 

s ke1,2 = s e1,2 cos 2 α t

Addendum height above the chord

 

Unit addendum width (measured normally)

 

 

where:

 
   

Operating width of gears

 

b w = b

Factor of mesh duration

 

ε = ε + ε

Minimum correction without tapering

 

 

where:

   

h a0 * = h a * + c * - r f * (1 - sin α t )

Minimum correction without undercut

 

Minimum correction without undercut

 

Helix angle at end

 

sinβ e = sinβ m R m /R e

Normal pressure angle at end

 

tanα ne = tanα t cosβe