Spur Gear Strength Calculation With CSN 01 4686, ISO 6336 and DIN 3990

Based on the fixed-end beam calculation. Contains the majority of effects.

Safety factors

Contact fatigue

where:

 

σ Hlim

contact fatigue limit (material property)

 

F t

tangential force acting at teeth

 

b w

operating face width

 

d 1

pitch diameter of pinion

Contact during one-time loading

where:

 

σ HPmax

permissible contact stress

 

K AS

one-time overloading factor

Bending fatigue

where:

 

σ Flim

bending fatigue limit (material property)

 

b wF1,2 = min (b 1,2 , b w + 2m)

tooth width for bending

Bending during one-time loading

where:

 

σ FPmax

permissible bending stress

Factor calculations

Z N ... life factor (for contact)

1 Z N 1.3 nitridated steels

1 Z N 1.6 other steels

 

N Hlim

base number of load cycles for contact (material property)

 

N K1,2 = 60 L h n 1,2

required number of load cycles (speed)

Y N ... life factor (for bending)

1 Y N 1.6 nitridated steels

1 Y N 2.5 other steels

 

N Flim

base number of load cycles for bending (material property)

 

N K1,2 = 60 L h n 1,2

required number of load cycles (speed)

Z L ... lubricant factor

 

DIN and ISO:

 
   

Z L = C ZL + 4 (1 - C ZL ) 0.158

 

C ZL = σ Hlim / 4375 + 0.6357

 

for σ Hlim < 850 Mpa C ZL = 0.83

 

for σ Hlim > 1200 Mpa C ZL = 0.91

Z R ... roughness factor

Z V ... speed factor

 

CSN:

 
   

Z v = 0.95 + 0.08 log v

 

ISO and DIN:

 
   

C ZV = C ZL + 0.02

Z E ... elasticity factor

where:

  μ

Poisson's ratio (material property)

 

E

modulus of elasticity (material property)

Z H ... zone factor

Z B ... single pair tooth contact factor

for ε 1 or internal gearing:

 

Z B1,2 = 1

for ε = 0:

 
 

for ε < 1:

 
 

Z B1,2 = Z B0 - ε b (Z B0 - 1)

where:

 

Z B0 = Z B1,2 calculated for ε = 0

Z ε ... contact ratio factor

for ε = 0:

 
 

for ε < 1:

 

for ε 1:

 

Y ... contact ration factor (for bending)

CSN:

 

for ε < 1:

 

for ε 1:

ISO and DIN:

 

Z ... helix angle factor (for contact)

CSN:

 

Z = 1

ISO and DIN:

 

Y ... helix angle factor (for bending)

CSN:

 

Y βmin = 1 - 0.25 ε 0.75

ISO and DIN:

 

for ε > 1 the ε = 1 is used

 

for β > 30° the β = 30° is used

Z x ... size factor (for contact)

Y x ... size factor (for bending)

Z W ... work hardening factor

Y Fa ... form factor

where:

 

h Fa

bending arm of a force acting on the tooth end

 

s Fn

thickness of dedendum dangerous section of alternate gear

 

α Fan

bending angle at the end of straight tooth of alternate gear

Y Sa ... stress correction factor

Y Sa = (1.2 + 0.13 L a ) q s exp

Y Sag ... teeth with grinding notches factor

Y ... notch sensitivity factor (depends on the material and curvature radius of dedendum transition)

Y R ... tooth root surface factor

K H ... additional loads factor (for contact)

K H = K A K Hv K Hb K Ha

K F ... additional loads factor (for bending)

K F = K A K Fv K Fb K Fa

K A ... application factor (external dynamic forces)

K Hv ... dynamic factor (internal dynamic forces) for contact

K Fv ... dynamic factor (internal dynamic forces) for bending

for CSN:

 

at K A F t / b w < 150 considering K A F t / b w = 150

for ISO and DIN:

 

at K A F t / b w < 100 considering K A F t / b w = 100

 

where: K P , K Q ... table values

K Hβ ... face load factor (for contact)

for CSN:

where:

 

c = 0.4

gears with hardened tooth sides

 

c = 0.3

non-hardened gears

 

 
 

f ky = | f sh1 + f sh2 | + f kZ - y

 

 
 

f b , f x , f y ... teeth tolerance

y ... table value

 

for ISO and DIN:

 

for

 

otherwise ( < 1):

 

F βy = F βx χ

 
 

for gears with hardened tooth sides χ = 0.85

 
 

for others

 

F βx = 1.33 f sh + f ma

 
 

q' = 0.04723 + 0.15551/z v1 + 0.25791/z v2 - 0.00635 x 1 - 0.11654 x 1 /z v1 - 0.00193 x 2 - 0.24188 x 2 /z v2 + 0.00529 x 1 2 + 0.00182 x 2 2

 

 

for F t K A / b w < 100 the values are interpolated

 

for ISO c' = c' [(F t K A / b w ) / 100] 0.25

 

for DIN c' = c' (F t K A / b w ) / 100

 

C M = 0.8

 

C R = 1 for solid gears

 

C B = [1 + 0.5 (1.2 - h f /m)] [1 - 0.02 (20° - α)]

 

E steel = 206 000

 

c = c' (0.75 ε + 0.25)

 

 

A, B ... table values depend on the arrangement of teeth gears, shafts, and bearings

K Fβ ... face load factor (for bending)

K Fβ = (K Hβ ) NF

where:

 

 
 

h = 2 m/ε

spur gears

 

h = 2 m

helical gears

K Fa ... transverse load factor (for bending)

for ε < 2:

 
 

for ε> 2:

 
 

at K A F t / b w < 100 considering K A F t / b w = 100

 

limit values:

 
 

for CSN: 1 K Fα ε

 

K Hα ... transverse load factor (for contact)

for CSN:

 
 

K Hα = 1 for straight teeth

 

K Hα = K Fα for helical teeth

DIN and ISO:

 
 

K Hα = K Fα

for limit values: