C++ API Reference
latticeNoise/latticeNoise.cpp
//-
// ==========================================================================
// Copyright 1995,2006,2008 Autodesk, Inc. All rights reserved.
//
// Use of this software is subject to the terms of the Autodesk
// license agreement provided at the time of installation or download,
// or which otherwise accompanies this software in either electronic
// or hard copy form.
// ==========================================================================
//+
// DESCRIPTION:
//
// Produces the dependency graph node "latticeNoise" and MEL command "latticeNoise".
//
// This plug-in is an example of the following:
//
// - how to have node attributes input and output geometry
// - how to modify dependency graph connections using the API
// - how to take Maya objects as arguments to a user defined MEL command
//
// The "latticeNoise" command creates a new lattice deformer around the currently selected geometry
// or around the objects specified on the command line. The command also inserts a "latticeNoise" node
// in between the lattice shape in the DAG and the node that performs the deformation.
//
// The end effect of the "latticeNoise" command is that the objects inside the lattice deform
// with respect to the lattice, but they also wobble about randomly as noise is applied to the lattice points.
// The "latticeNoise" node has attributes for amplitude and frequency that control the amount of noise applied.
//
// An example of using the command is:
//
// latticeNoise nurbsSphereShape1 nurbsConeShape1;
//
#include "latticeNoise.h"
#include <maya/MFnPlugin.h>
#include <maya/MString.h>
#include <stdlib.h>
MStatus initializePlugin( MObject obj )
{
MStatus status;
MFnPlugin plugin( obj, PLUGIN_COMPANY, "3.0", "Any");
// Register latticeNoise node
//
status = plugin.registerNode( "latticeNoise", latticeNoiseNode::id,
latticeNoiseNode::creator,
latticeNoiseNode::initialize);
if (!status) {
status.perror("registerNode");
return status;
}
// Register latticeNoise command
//
status = plugin.registerCommand( "latticeNoise", latticeNoiseCmd::creator );
if (!status) {
plugin.deregisterNode( latticeNoiseNode::id );
status.perror("registerCommand");
return status;
}
return status;
}
MStatus uninitializePlugin( MObject obj)
{
MStatus status;
MFnPlugin plugin( obj );
// Deregister latticeNoise node
//
status = plugin.deregisterNode( latticeNoiseNode::id );
if (!status) {
status.perror("registerNode");
return status;
}
// Register latticeNoise command
//
status = plugin.deregisterCommand( "latticeNoise" );
if (!status) {
status.perror("deregisterCommand");
return status;
}
return status;
}
//
// Class: noise
//
// Description:
// The noise class is used for generating pseudo-random continuous noise.
// The noise values generated are always between 0 and 1.
//
// The technique used is a simple lattice noise algorithm based upon one
// by Ken Perlin. This particular implementation is adapted from
// Darwyn Peachey's (Texturing and Modeling: a Procedural Approach, S. Ebert
// Editor, 1994).
//
#include <stdlib.h>
#include <math.h>
const int kTableMask = TABLE_SIZE - 1;
// PUBLIC //
float noise::atValue( float x )
//
// Description:
// Get the noise value at the given point in 1-space.
//
// Arguments:
// x - the point at which to calculate the noise
//
// Return Value:
// the noise value at the point
//
{
int ix;
float fx;
if ( !isInitialized ) {
initTable( 23479015 );
isInitialized = 1;
}
ix = (int)floorf( x );
fx = x - (float)ix;
return spline( fx, value( ix - 1 ),
value( ix ),
value( ix + 1 ),
value( ix + 2 ) );
}
float noise::atPoint( float x, float y, float z )
//
// Description:
// Get the noise value at the given point in 3-space.
//
// Arguments:
// x - x component of point
// y - x component of point
// z - x component of point
//
// Return Value:
// the noise value at the point
//
{
int ix, iy, iz;
int i, j, k;
float fx, fy, fz;
float xknots[4], yknots[4], zknots[4];
if ( !isInitialized ) {
initTable( 23479015 );
}
ix = (int)floorf( x );
fx = x - (float)ix;
iy = (int)floorf( y );
fy = y - (float)iy;
iz = (int)floorf( z );
fz = z - (float)iz;
for ( k = -1; k <= 2; k++ ) {
for ( j = -1; j <= 2; j++ ) {
for ( i = -1; i <= 2 ; i++ ) {
xknots[i+1] = value( ix + i, iy + j, iz + k );
}
yknots[j+1] = spline( fx, xknots[0], xknots[1], xknots[2], xknots[3] );
}
zknots[k+1] = spline( fy, yknots[0], yknots[1], yknots[2], yknots[3] );
}
float val = spline( fz, zknots[0], zknots[1], zknots[2], zknots[3] );
return val;
}
pnt noise::atPointAndTime( float x, float y, float z, float t )
//
// Description:
// Get three noise values at the given point in 4-space. This is actually
// a reasonably expensive operation. It requires 255 simple spline
// interpolations. However, the noise function is continuous.
//
// Arguments:
// x - x component of point
// y - x component of point
// z - x component of point
// t - t component of point (time component)
//
// Return Value:
// the noise value at the point
//
{
pnt ret;
int ix, iy, iz, it;
int i, j, k, l;
float fx, fy, fz, ft;
float xknots[3][4], yknots[3][4], zknots[3][4], tknots[3][4];
if ( !isInitialized ) {
initTable( 23479015 );
}
ix = (int)floorf( x );
fx = x - (float)ix;
iy = (int)floorf( y );
fy = y - (float)iy;
iz = (int)floorf( z );
fz = z - (float)iz;
it = (int)floorf( t);
ft = t - (float)it;
for ( l = -1; l <= 2; l++ ) {
for ( k = -1; k <= 2; k++ ) {
for ( j = -1; j <= 2; j++ ) {
for ( i = -1; i <= 2 ; i++ ) {
xknots[0][i+1] = value( ix + i, iy + j, iz + k, it + l,
valueTable1 );
xknots[1][i+1] = value( ix + i, iy + j, iz + k, it + l,
valueTable2 );
xknots[2][i+1] = value( ix + i, iy + j, iz + k, it + l,
valueTable3 );
}
yknots[0][j+1] = spline( fx, xknots[0][0], xknots[0][1],
xknots[0][2], xknots[0][3] );
yknots[1][j+1] = spline( fx, xknots[1][0], xknots[1][1],
xknots[1][2], xknots[1][3] );
yknots[2][j+1] = spline( fx, xknots[2][0], xknots[2][1],
xknots[2][2], xknots[2][3] );
}
zknots[0][k+1] = spline( fy, yknots[0][0], yknots[0][1],
yknots[0][2], yknots[0][3] );
zknots[1][k+1] = spline( fy, yknots[1][0], yknots[1][1],
yknots[1][2], yknots[1][3] );
zknots[2][k+1] = spline( fy, yknots[2][0], yknots[2][1],
yknots[2][2], yknots[2][3] );
}
tknots[0][l+1] = spline( fz, zknots[0][0], zknots[0][1],
zknots[0][2], zknots[0][3] );
tknots[1][l+1] = spline( fz, zknots[1][0], zknots[1][1],
zknots[1][2], zknots[1][3] );
tknots[2][l+1] = spline( fz, zknots[2][0], zknots[2][1],
zknots[2][2], zknots[2][3] );
}
ret.x = spline( ft, tknots[0][0], tknots[0][1], tknots[0][2], tknots[0][3] );
ret.y = spline( ft, tknots[1][0], tknots[1][1], tknots[1][2], tknots[1][3] );
ret.z = spline( ft, tknots[2][0], tknots[2][1], tknots[2][2], tknots[2][3] );
return ret;
}
void noise::initTable( long seed )
//
// Description:
// Initialize the table of random values with the given seed.
//
// Arguments:
// seed - the new seed value
//
{
srand48( seed );
for ( int i = 0; i < TABLE_SIZE; i++ ) {
valueTable1[i] = (float)drand48();
valueTable2[i] = (float)drand48();
valueTable3[i] = (float)drand48();
}
isInitialized = 1;
}
// PRIVATE //
float noise::spline( float x, float knot0, float knot1, float knot2, float knot3 )
//
// Description:
// This is a simple version of a Catmull-Rom spline interpolation.
//
// Assumptions:
//
// 0 < x < 1
//
//
{
float c0, c1, c2, c3;
// Evaluate span of cubic at x using Horner's rule
//
c3 = (-0.5F * knot0 ) + ( 1.5F * knot1 ) + (-1.5F * knot2 ) + ( 0.5F * knot3 );
c2 = ( 1.0F * knot0 ) + (-2.5F * knot1 ) + ( 2.0F * knot2 ) + (-0.5F * knot3 );
c1 = (-0.5F * knot0 ) + ( 0.0F * knot1 ) + ( 0.5F * knot2 ) + ( 0.0F * knot3 );
c0 = ( 0.0F * knot0 ) + ( 1.0F * knot1 ) + ( 0.0F * knot2 ) + ( 0.0F * knot3 );
return ( ( c3 * x + c2 ) * x + c1 ) * x + c0;;
}
int noise::isInitialized = 0;
int noise::permtable[256] = {
254, 91, 242, 186, 90, 204, 85, 133, 233,
50, 187, 49, 182, 224, 144, 166, 7, 51,
20, 179, 36, 203, 114, 156, 195, 40, 24,
60, 162, 84, 126, 102, 63, 194, 220, 161,
72, 94, 193, 229, 140, 57, 3, 189, 106,
54, 164, 198, 199, 44, 245, 235, 100, 87,
25, 41, 62, 111, 13, 70, 27, 82, 69,
53, 66, 247, 124, 67, 163, 125, 155, 228,
122, 19, 113, 143, 121, 9, 1, 241, 171,
200, 83, 244, 185, 170, 141, 115, 190, 154,
48, 32, 178, 127, 167, 56, 134, 15, 160,
238, 64, 6, 11, 196, 232, 26, 89, 0,
219, 112, 68, 30, 215, 227, 75, 132, 71,
239, 251, 92, 14, 104, 231, 29, 180, 150,
226, 191, 47, 73, 37, 183, 88, 105, 42,
22, 2, 38, 5, 119, 74, 249, 184, 52,
8, 55, 118, 255, 206, 173, 165, 78, 31,
123, 98, 212, 80, 139, 61, 138, 77, 177,
45, 137, 145, 28, 168, 128, 95, 223, 35,
205, 76, 211, 175, 81, 33, 207, 21, 131,
58, 152, 16, 240, 18, 96, 210, 109, 214,
216, 202, 148, 34, 146, 117, 176, 93, 246,
172, 97, 159, 197, 218, 65, 147, 253, 221,
217, 79, 101, 142, 23, 149, 99, 39, 12,
135, 110, 234, 108, 153, 129, 4, 169, 174,
116, 243, 130, 107, 222, 10, 43, 188, 46,
213, 252, 86, 157, 192, 236, 158, 120, 17,
103, 248, 225, 230, 250, 208, 181, 151, 237,
201, 59, 136, 209
};
float noise::valueTable1[256];
float noise::valueTable2[256];
float noise::valueTable3[256];