C++ API Reference
rockingTransform/rockingTransform.cpp
//-
// ==========================================================================
// Copyright 2015 Autodesk, Inc. All rights reserved.
//
// Use of this software is subject to the terms of the Autodesk
// license agreement provided at the time of installation or download,
// or which otherwise accompanies this software in either electronic
// or hard copy form.
// ==========================================================================
//+
//
// Example custom transform:
// This plug-in implements an example custom transform that
// can be used to perform a rocking motion around the X axis.
// Geometry of any rotation can be made a child of this transform
// to demonstrate the effect.
// The plug-in contains two pieces:
// 1. The custom transform node -- rockingTransformNode
// 2. The custom transformation matrix -- rockingTransformMatrix
// These classes are used together in order to implement the
// rocking motion. Note that the rock attribute is stored outside
// of the regular transform attributes.
//
// MEL usage:
/*
// Create a rocking transform and make a rotated plane
// its child.
loadPlugin rockingTransform;
file -f -new;
polyPlane -w 1 -h 1 -sx 10 -sy 10 -ax 0 1 0 -cuv 2 -ch 1;
select -r pPlane1 ;
rotate -r -ws -15 -15 -15 ;
createNode rockingTransform;
parent pPlane1 rockingTransform1;
setAttr rockingTransform1.rockx 55;
*/
//
#include <maya/MPxTransform.h>
#include <maya/MPxTransformationMatrix.h>
#include <maya/MGlobal.h>
#include <maya/MFnNumericAttribute.h>
#include <maya/MTransformationMatrix.h>
#include <maya/MIOStream.h>
#include <assert.h>
#include "rockingTransform.h"
#ifndef M_PI
#include <math.h>
#endif
//
// Initialize our static class variables
//
MObject rockingTransformNode::aRockInX;
MTypeId rockingTransformNode::id(kRockingTransformNodeID);
MTypeId rockingTransformMatrix::id(kRockingTransformMatrixID);
//
// Implementation of our custom transformation matrix
//
//
// Constructor for matrix
//
rockingTransformMatrix::rockingTransformMatrix()
{
rockXValue = 0.0;
}
//
// Creator for matrix
//
MPxTransformationMatrix *rockingTransformMatrix::creator()
{
return new rockingTransformMatrix();
}
//
// Utility method for getting the rock
// motion in the X axis
//
double rockingTransformMatrix::getRockInX() const
{
return rockXValue;
}
//
// Utility method for setting the rock
// motion in the X axis
//
void rockingTransformMatrix::setRockInX( double rock )
{
rockXValue = rock;
}
//
// This method will be used to return information to
// Maya. Use the attributes which are outside of
// the regular transform attributes to build a new
// matrix. This new matrix will be passed back to
// Maya.
//
MMatrix rockingTransformMatrix::asMatrix() const
{
return ParentClass::asMatrix();
}
MMatrix rockingTransformMatrix::asMatrix(double percent) const
{
// Apply the percentage to the matrix components
MVector trans = m.translation();
trans *= percent;
m.translateTo( trans );
MPoint rotatePivotTrans = m.rotatePivot();
rotatePivotTrans = rotatePivotTrans * percent;
m.setRotatePivot( rotatePivotTrans );
MPoint scalePivotTrans = m.scalePivotTranslation();
scalePivotTrans = scalePivotTrans * percent;
m.setScalePivotTranslation( scalePivotTrans );
// Apply the percentage to the rotate value. Same
// as above + the percentage gets applied
MQuaternion quat = rotation();
DegreeRadianConverter conv;
double newTheta = conv.degreesToRadians( getRockInX() );
quat.setToXAxis( newTheta );
m.rotateBy( quat );
MEulerRotation eulRotate = m.eulerRotation();
m.rotateTo( eulRotate * percent, MSpace::kTransform);
// Apply the percentage to the scale
s.x = 1.0 + (s.x - 1.0)*percent;
s.y = 1.0 + (s.y - 1.0)*percent;
s.z = 1.0 + (s.z - 1.0)*percent;
m.scaleTo(s, MSpace::kTransform);
return m.asMatrix();
}
MMatrix rockingTransformMatrix::asRotateMatrix() const
{
MMatrix Ro = rotateOrientationValue.asMatrix();
MMatrix R = rotationValue.asMatrix();
MMatrix Rr = preRotation().asMatrix();
MMatrix Rt;
Rt[3][0] = rotatePivotTranslationValue.x;
Rt[3][1] = rotatePivotTranslationValue.y;
Rt[3][2] = rotatePivotTranslationValue.z;
MMatrix Rp;
Rp[3][0] = rotatePivotValue.x;
Rp[3][1] = rotatePivotValue.y;
Rp[3][2] = rotatePivotValue.z;
MMatrix RpInv;
RpInv[3][0] = -rotatePivotValue.x;
RpInv[3][1] = -rotatePivotValue.y;
RpInv[3][2] = -rotatePivotValue.z;
return (RpInv * Ro * R * Rr * Rp * Rt);
}
MStatus rockingTransformMatrix::setRotatePivot(const MPoint &rotatePivot, MSpace::Space space, bool balance)
{
MPoint newPivot(rotatePivot);
if (space != MSpace::kTransform) {
if (space == MSpace::kPostTransform) {
newPivot *= asMatrixInverse();
}
newPivot *= asScaleMatrix();
}
if (balance) {
MMatrix Ro = rotateOrientationValue.asMatrix();
MMatrix R = rotationValue.asMatrix();
MMatrix Rr = preRotation().asMatrix();
MMatrix Rp;
Rp[3][0] = newPivot.x;
Rp[3][1] = newPivot.y;
Rp[3][2] = newPivot.z;
MMatrix RpInv;
RpInv[3][0] = -newPivot.x;
RpInv[3][1] = -newPivot.y;
RpInv[3][2] = -newPivot.z;
MMatrix leftMat = RpInv * Ro * R * Rr * Rp;
MMatrix mat = leftMat.inverse() * asRotateMatrix();
rotatePivotTranslationValue[0] = mat[3][0];
rotatePivotTranslationValue[1] = mat[3][1];
rotatePivotTranslationValue[2] = mat[3][2];
}
rotatePivotValue = newPivot;
return MS::kSuccess;
}
//
// This method returns the local rotation used by rotate manipulator
//
MQuaternion rockingTransformMatrix::preRotation() const
{
DegreeRadianConverter conv;
double newTheta = conv.degreesToRadians(getRockInX());
MQuaternion quat; quat.setToXAxis(newTheta);
return quat;
}
//
// Implementation of our custom transform
//
//
// Constructor of the transform node
//
rockingTransformNode::rockingTransformNode()
: ParentClass()
{
}
//
// Post constructor method. Have access to *this. Node setup
// operations that do not go into the initialize() method should go
// here.
//
void rockingTransformNode::postConstructor()
{
// Make sure the parent takes care of anything it needs.
//
ParentClass::postConstructor();
MPlug aRockInXPlug(thisMObject(), aRockInX);
}
//
// This method computes the transformation matrix for a passed data block
// and places the output into a passed transformation matrix.
//
rockingTransformNode::computeLocalTransformation(MPxTransformationMatrix *xform,
MDataBlock &block)
{
// Get the value from the aRockInX attribute
MStatus status = MS::kSuccess;
MDataHandle rockInXHandle = block.inputValue (aRockInX, &status);
ReturnOnError(status);
// Store it in the transformation matrix so that when asked for it through
// asMatrix() it can construct the desired matrix
rockingTransformMatrix* ltm = dynamic_cast<rockingTransformMatrix*>(xform);
assert(ltm);
ltm->setRockInX(rockInXHandle.asDouble());
return ParentClass::computeLocalTransformation(xform, block);
}
//
// The transform's compute method
//
MStatus rockingTransformNode::compute( const MPlug& plug, MDataBlock& block )
{
{
rockingTransformMatrix *ltm = getRockingTransformMatrix();
if (ltm) {
computeLocalTransformation(ltm, block);
} else {
MGlobal::displayError("Failed to get rock transform matrix");
}
}
return MPxTransform::compute(plug, block);
}
//
// Destructor of the rocking transform
//
rockingTransformNode::~rockingTransformNode()
{
}
//
// Method that returns the new transformation matrix
//
MPxTransformationMatrix *rockingTransformNode::createTransformationMatrix()
{
return new rockingTransformMatrix();
}
//
// Method that returns a new transform node
//
void *rockingTransformNode::creator()
{
return new rockingTransformNode();
}
//
// Node initialize method. We configure node
// attributes here. Static method so
// *this is not available.
//
MStatus rockingTransformNode::initialize()
{
aRockInX = numFn.create("RockInX", "rockx", MFnNumericData::kDouble, 0.0);
numFn.setKeyable(true);
numFn.setAffectsWorldSpace(true);
addAttribute(aRockInX);
// Need to update matrix when attribute aRockInX is modified
attributeAffects(aRockInX, matrix);
// This is required so that the validateAndSet method is called
mustCallValidateAndSet(aRockInX);
return MS::kSuccess;
}
//
// Debugging method
//
const char* rockingTransformNode::className()
{
return "rockingTransformNode";
}
//
// Reset transformation
//
void rockingTransformNode::resetTransformation (const MMatrix &matrix)
{
ParentClass::resetTransformation( matrix );
}
//
// Reset transformation
//
void rockingTransformNode::resetTransformation (MPxTransformationMatrix *resetMatrix )
{
ParentClass::resetTransformation( resetMatrix );
}
//
// A very simple implementation of validAndSetValue(). No lock
// or limit checking on the rocking attribute is done in this method.
// If you wish to apply locks and limits to the rocking attribute, you
// would follow the approach taken in the rockingTransformCheck example.
// Meaning you would implement methods similar to:
// * applyRotationLocks();
// * applyRotationLimits();
// * checkAndSetRotation();
// but for the rocking attribute. The method checkAndSetRotation()
// would be called below rather than updating the rocking attribute
// directly.
//
MStatus rockingTransformNode::validateAndSetValue(const MPlug& plug, const MDataHandle& handle)
{
// Make sure that there is something interesting to process.
//
if (plug.isNull())
return MS::kFailure;
if ( plug == aRockInX )
{
MStatus status = MS::kSuccess;
MDataBlock block = forceCache();
MDataHandle blockHandle = block.outputValue(plug, &status);
ReturnOnError(status);
// Update our new rock in x value
double rockInX = handle.asDouble();
blockHandle.set(rockInX);
// Update the custom transformation matrix to the
// right rock value.
rockingTransformMatrix *ltm = getRockingTransformMatrix();
if (ltm)
ltm->setRockInX(rockInX);
else
MGlobal::displayError("Failed to get rock transform matrix");
blockHandle.setClean();
// Mark the matrix as dirty so that DG information
// will update.
dirtyMatrix();
return status;
}
// Allow processing for other attributes
return ParentClass::validateAndSetValue(plug, handle);
}
//
// Method for returning the current rocking transformation matrix
//
rockingTransformMatrix *rockingTransformNode::getRockingTransformMatrix()
{
rockingTransformMatrix *ltm = (rockingTransformMatrix *) transformationMatrixPtr();
return ltm;
}
//
// Utility class
//
double DegreeRadianConverter::degreesToRadians( double degrees )
{
return degrees * ( M_PI/ 180.0 );
}
double DegreeRadianConverter::radiansToDegrees( double radians )
{
return radians * (180.0/M_PI);
}