Spur Gear Strength Calculation With CSN 01 4686, ISO 6336 and DIN 3990

Based on the fixed-end beam calculation. Contains the majority of effects.

Safety factors

Contact fatigue

where:

 

σ Hlim

contact fatigue limit (material property)

 

F t

tangential force acting at teeth

 

b w

operating face width

 

d 1

pitch diameter of pinion

Contact during one-time loading

where:

 

σ HPmax

permissible contact stress

 

K AS

one-time overloading factor

Bending fatigue

where:

 

σ Flim

bending fatigue limit (material property)

 

b wF1,2 = min (b 1,2 , b w + 2m)

tooth width for bending

Bending during one-time loading

where:

 

σ FPmax

permissible bending stress

Factor calculations

ZN... life factor (for contact)

1 ≤ ZN ≤ 1.3 nitridated steels

1 ≤ ZN ≤ 1.6 other steels

 

N Hlim

base number of load cycles for contact (material property)

 

N K1,2 = 60 L h n 1,2

required number of load cycles (speed)

YN... life factor (for bending)

1 ≤ YN ≤ 1.6 nitridated steels

1 ≤ YN ≤ 2.5 other steels

 

N Flim

base number of load cycles for bending (material property)

 

N K1,2 = 60 L h n 1,2

required number of load cycles (speed)

ZL... lubricant factor

 

DIN and ISO:

 
  

Z L = C ZL + 4 (1 - C ZL ) 0.158

 

C ZL = σ Hlim / 4375 + 0.6357

 

for σ Hlim < 850 Mpa C ZL = 0.83

 

for σ Hlim > 1200 Mpa C ZL = 0.91

ZR... roughness factor

ZV... speed factor

 

CSN:

 
  

Z v = 0.95 + 0.08 log v

 

ISO and DIN:

 
  

C ZV = C ZL + 0.02

ZE... elasticity factor

where:

   μ

Poisson's ratio (material property)

 

E

modulus of elasticity (material property)

ZH... zone factor

ZB... single pair tooth contact factor

for ε β ≥ 1 or internal gearing:

 

Z B1,2 = 1

for ε β = 0:

 
  

for ε β < 1:

 
 

Z B1,2 = Z B0 - ε b (Z B0 - 1)

where:

 

Z B0 = Z B1,2 calculated for ε β = 0

Zε... contact ratio factor

for ε β = 0:

 
  

for ε β < 1:

  

for ε β ≥ 1:

  

Yε... contact ration factor (for bending)

CSN:

 

for ε β < 1:

 

 

for ε β ≥ 1:

 

ISO and DIN:

  

Zβ... helix angle factor (for contact)

CSN:

 

Z β = 1

ISO and DIN:

  

Yβ... helix angle factor (for bending)

CSN:

 

Y βmin = 1 - 0.25 ε β ≥ 0.75

ISO and DIN:

 

for ε β > 1 the ε β = 1 is used

 

for β > 30° the β = 30° is used

Zx... size factor (for contact)

Yx... size factor (for bending)

ZW... work hardening factor

YFa... form factor

where:

 

h Fa

bending arm of a force acting on the tooth end

 

s Fn

thickness of dedendum dangerous section of alternate gear

 

α Fan

bending angle at the end of straight tooth of alternate gear

YSa... stress correction factor

YSa = (1.2 + 0.13 La) qsexp

YSag... teeth with grinding notches factor

Yδ... notch sensitivity factor (depends on the material and curvature radius of dedendum transition)

YR... tooth root surface factor

KH... additional loads factor (for contact)

KH = KA KHv KHb KHa

K F ... additional loads factor (for bending)

KF = KA KFv KFb KFa

KA... application factor (external dynamic forces)

KHv... dynamic factor (internal dynamic forces) for contact

KFv... dynamic factor (internal dynamic forces) for bending

for CSN:

 

at K A F t / b w < 150 considering K A F t / b w = 150

for ISO and DIN:

 

at K A F t / b w < 100 considering K A F t / b w = 100

 

where: K P , K Q ... table values

K... face load factor (for contact)

for CSN:

where:

 

c = 0.4

gears with hardened tooth sides

 

c = 0.3

non-hardened gears

  

 
 

f ky = | f sh1 + f sh2 | + f kZ - y β

  

 
 

f b , f x , f y ... teeth tolerance

y β ... table value

 

for ISO and DIN:

 

for

 
 

otherwise ( < 1):

 

 

F βy = F βx χ β

 
 

for gears with hardened tooth sides χ β = 0.85

 
 

for others

 

 

F βx = 1.33 f sh + f ma

 
 

q' = 0.04723 + 0.15551/z v1 + 0.25791/z v2 - 0.00635 x 1 - 0.11654 x 1 /z v1 - 0.00193 x 2 - 0.24188 x 2 /z v2 + 0.00529 x 1 2 + 0.00182 x 2 2

  

 

for F t K A / b w < 100 the values are interpolated

 

for ISO c' = c' [(F t K A / b w ) / 100] 0.25

 

for DIN c' = c' (F t K A / b w ) / 100

 

C M = 0.8

 

C R = 1 for solid gears

 

C B = [1 + 0.5 (1.2 - h f /m)] [1 - 0.02 (20° - α)]

 

E steel = 206 000

 

c γ = c' (0.75 ε α + 0.25)

  

 

A, B ... table values depend on the arrangement of teeth gears, shafts, and bearings

K... face load factor (for bending)

K = (K)NF

where:

  

 
 

h = 2 m/ε α

spur gears

 

h = 2 m

helical gears

KFa... transverse load factor (for bending)

for ε γ < 2:

 
  

for ε γ > 2:

 
 

at K A F t / b w < 100 considering K A F t / b w = 100

  

limit values:

 
 

for CSN: 1 ≤ K ≤ε γ

  

K... transverse load factor (for contact)

for CSN:

 
 

K = 1 for straight teeth

 

K = K for helical teeth

DIN and ISO:

 
 

K = K

for limit values: