Basic Geometric Calculation for Bevel Gears

Input Parameters

Gear type - according to the position of root and head cone

Gear ratio and tooth numbers

Pressure angle (the angle of tool profile) α t

Helix angle β m

Axis angle Σ

Tangential module on outer cone met (for metric calculation)

Tangential Diametral Pitch on outer cone Pet (for English units)

Note: Module and Diametral Pitch are reciprocal values.

Unit addendum height ha *

Unit clearance c *

Unit dedendum fillet r f *

Facewidths b 1 , b 2

Unit correction x = x 1 = - x 2

Unit change of tooth thickness x t = x t1 = - x t2

Auxiliary Geometric Calculations

Distribution of Unit Corrections for Single Gears

Design According to the Strength Calculation

Design of Face Width

Calculation of Maximum Dedendum Filleting

Calculated parameters

  

Normal Pressure Angle in Middle Plane

 

tg α nm = tg α t cos β m

Pitch angle

  

Outside pitch diameter

 

d e1,2 = m et z 1,2

Outside length of surface line on pitch cone

  

Length of surface line on the mean cone

 

R m = R e - 0.5 b

Relative face width

  

Tangential module on the mean cone

  

Normal module on the mean cone

 

m mn = m mt cos β m

Mean pitch diameter

 

d m1,2 = m mt z 1,2

Equivalent number of teeth

  

Ekvivalent pitch diameter

  

Ekvivalent base diameter

 

d vb1,2 = d v1,2 cos α t

Ekvivalent outside diameter

 

d va1,2 = d v1,2 + 2 h ae1,2 m mt / m et

Ekvivalent center distance

 

a v = 0.5 (d v1 + d v2 )

Virtual gear ratio

  

Virtual number of teeth

  

Virtual pitch diameter

  

Virtual base diameter

 

d bn1,2 = d n1,2 cos α t

Virtual outside diameter

 

d an1,2 = d n1,2 + 2 h ae1,2 m mt / m et

Virtual helix angle at the base cylinder

 

sin β b = sin β m cos α nm

Virtual center distance

 

a n = 0.5 (d n1 + d n2 )

Dedendum reduction

 

k 1,2 = 0.02 (17 - z n1,2 )

for k > 0 the dedendum shortening is done

Addendum

 

h ae1,2 = m et (h a * + x 1,2 - k 1,2 )

Dedendum

 

hf e1,2 = m et (h a * + c * - x 1,2 )

Outside diameter

 

d ae1,2 = d e1,2 + 2ha e1,2 cos δ 1,2

Root diameter

 

d fe1,2 = d e1,2 - 2 hfe1,2 cos δ 1,2 )

Outside diameter at small end

 

d ai1,2 = d ae1,2 (1 - ψ R )

Vertex distance

 

A 1,2 = R e cos δ 1,2 - h ae1,2 sin δ 1,2

Outside bevel angle

  

Cutting angle

  

Tooth thickness (measured normally on the pitch diameter)

  

Chordal facewidth (normal)

 

s ke1,2 = s e1,2 cos 2 α t

Addendum height above the chord

  

Unit addendum width (measured normally)

  

 

where:

 
   

Operating width of gears

 

b w = b

Factor of mesh duration

 

ε γ = ε α + ε β

Minimum correction without tapering

  

 

where:

  

h a0 * = h a * + c * - r f * (1 - sin α t )

Minimum correction without undercut

  

Minimum correction without undercut

  

Helix angle at end

 

sinβ e = sinβ m R m /R e

Normal pressure angle at end

 

tanα ne = tanα t cosβe