Długość łańcucha jest określona liczbą ogniw łańcucha oraz podział łańcucha. Trajektoria napędu łańcucha oparta jest na konkretnej pozycji koła i żądanym kierunku ruchu.
Algorytm obliczania długości łańcucha wykorzystuje średnice podziałowe kół. Średnica podziałowa dla każdego koła napędowego łańcucha rolkowego lub koła pośredniego jest uzyskiwana z poniższych równań.
Pozycja koła przesuwnego jest dostosowana, tak aby uzyskać żądaną długość łańcucha. Aby odnaleźć odpowiednią pozycję koła przesuwnego, w obliczeniach używana jest algebra liniowa i rozwiązanie iteracji.
Podczas obliczania długości łańcucha uwzględniany jest fakt, iż trajektoria złożona jest z segmentów liniowych o długości podziału łańcucha, a łuki są zamieniane na rzeczywiste wieloboki.
Średnice podziałowe
| |
| |
gdzie: | ||
D P | Średnica podziałowa | |
p | podział łańcucha | |
z | liczba zębów koła | |
|
| D p = D + D r | |
gdzie: | ||
D P | Średnica podziałowa | |
D | Nominalna średnica koła pośredniczącego | |
D r | maksymalna średnica rolki łańcucha | |
Przykład napędu łańcucha z dwoma kołami
![]()
Wymagana liczba ogniw dla żądanej odległości osi
![]()
Wymagana liczba ogniw jest zaokrąglana do najbliższej liczby parzystej lub nieparzystej, a następnie rzeczywista odległość osi jest wyznaczana jako
C = F p [ 2 X - (z 1 + z 2)]
gdzie:
|
| |
|
|
Kąt działania jest wyznaczany jako
|
|
Liczba zębów w kontakcie z małym kołem
|
|
Znaczenie użytych zmiennych: