
CAM Post Processor Guide 8/28/19

Copyright © 2018-2019 Autodesk, Inc. All rights reserved.

Post Processor Training Guide
 For use with Fusion CAM, Inventor HSM, HSMWorks

Table of Contents

 I
CAM Post Processor Guide 8/28/19

1 Introduction to Post Processors ... 1-1
1.1 Scope .. 1-1

1.2 What is a Post Processor? .. 1-1
1.3 Finding a Post Processor ... 1-2

1.4 Downloading and Installing a Post Processor... 1-3
1.5 Creating/Modifying a Post Processor ... 1-6

1.6 Testing your Post Processor – Benchmark Parts .. 1-7
1.6.1 Locating the Benchmark Parts .. 1-7

1.6.2 Milling Benchmark Part.. 1-9
1.6.3 Mill/Turn Benchmark Part .. 1-10

1.6.4 Stock Transfer Benchmark Part .. 1-11
1.6.5 Probing Benchmark Part ... 1-12

2 Autodesk Post Processor Editor .. 2-13
2.1 Installing the Autodesk Post Processor Editor ... 2-13pdf

2.2 Autodesk Post Processor Settings .. 2-16
2.3 Left Side Flyout .. 2-18

2.3.1 Explorer Flyout .. 2-19
2.3.2 Search Flyout ... 2-21

2.3.3 Bookmarks Flyout .. 2-23
2.3.4 Extensions Flyout ... 2-24

2.4 Autodesk Post Processor Editor Features ... 2-25
2.4.1 Auto Completion .. 2-25

2.4.2 Syntax Checking... 2-25
2.4.3 Hiding Sections of Code ... 2-26

2.4.4 Matching Brackets .. 2-26
2.4.5 Go to Line Number ... 2-27

2.4.6 Opening a File in a Separate Window ... 2-27
2.4.7 Shortcut Keys ... 2-27

2.4.8 Running Commands ... 2-29
2.5 Running/Debugging the Post ... 2-29

2.5.1 Autodesk Post Processor Commands .. 2-29
2.5.2 The Post Processor Properties ... 2-30

2.5.3 Running the Post Processor .. 2-31
2.5.4 Creating Your Own CNC Intermediate Files ... 2-33

3 JavaScript Overview .. 3-34
3.1 Overview .. 3-34

3.2 JavaScript Syntax .. 3-34
3.3 Variables ... 3-36

3.3.1 Numbers ... 3-36
3.3.2 Strings .. 3-38

3.3.3 Booleans... 3-39
3.3.4 Arrays .. 3-39

3.3.5 Objects ... 3-41
3.3.6 The Vector Object .. 3-42

Table of Contents

 II
CAM Post Processor Guide 8/28/19

3.3.7 The Matrix Object .. 3-44
3.4 Expressions ... 3-47

3.5 Conditional Statements .. 3-48
3.5.1 The if Statement ... 3-48

3.5.2 The switch Statement.. 3-49
3.5.3 The Conditional Operator (?) .. 3-51

3.5.4 The typeof Operator ... 3-51
3.5.5 The conditional Function .. 3-52

3.5.6 try / catch.. 3-52
3.5.7 The validate Function ... 3-52

3.5.8 Comparing Real Values .. 3-53
3.6 Looping Statements ... 3-53

3.6.1 The for Loop .. 3-53
3.6.2 The for/in Loop .. 3-54

3.6.3 The while Loop .. 3-54
3.6.4 The do/while Loop ... 3-55

3.6.5 The break Statement ... 3-55
3.6.6 The continue Statement .. 3-56

3.7 Functions .. 3-56
3.7.1 The function Statement ... 3-56

3.7.2 Calling a function ... 3-57
3.7.3 The return Statement .. 3-57

4 Entry Functions .. 4-58
4.1 Global Section ... 4-59

4.1.1 Kernel Settings ... 4-60
4.1.2 Property Table .. 4-62

4.1.3 Format Definitions.. 4-66
4.1.4 Output Variable Definitions .. 4-68

4.1.5 Fixed Settings ... 4-70
4.1.6 Collected State ... 4-71

4.2 onOpen ... 4-71
4.2.1 Define Settings Based on Post Properties .. 4-71

4.2.2 Define the Multi-Axis Configuration .. 4-72
4.2.3 Output Program Name and Header ... 4-73

4.2.4 Performing General Checks .. 4-76
4.2.5 Output Initial Startup Codes ... 4-77

4.3 onSection .. 4-77
4.3.1 Ending the Previous Operation ... 4-78

4.3.2 Operation Comments and Notes ... 4-79
4.3.3 Tool Change ... 4-81

4.3.4 Work Coordinate System Offsets .. 4-84
4.3.5 Work Plane – 3+2 Operations ... 4-86

4.3.6 Initial Position .. 4-92
4.4 onSectionEnd .. 4-93

4.5 onClose ... 4-94

Table of Contents

 III
CAM Post Processor Guide 8/28/19

4.6 onTerminate .. 4-95
4.7 onCommand .. 4-96

4.8 onComment ... 4-97
4.9 onDwell .. 4-98

4.10 onParameter .. 4-99
4.10.1 getParameter Function .. 4-100

4.10.2 getGlobalParameter Function .. 4-101
4.11 onPassThrough .. 4-102

4.12 onSpindleSpeed ... 4-102
4.13 onOrientateSpindle .. 4-102

4.14 onRadiusCompensation ... 4-103
4.15 onMovement ... 4-104

4.16 onRapid ... 4-105
4.17 onExpandedRapid ... 4-106

4.18 onLinear .. 4-106
4.19 onExpandedLinear .. 4-108

4.20 onRapid5D .. 4-108
4.21 onLinear5D ... 4-109

4.22 onCircular ... 4-111
4.22.1 Circular Interpolation Settings .. 4-113

4.22.2 Circular Interpolation Common Functions .. 4-114
4.22.3 Helical Interpolation ... 4-115

4.22.4 Spiral Interpolation ... 4-116
4.22.5 3-D Circular Interpolation ... 4-117

4.23 onCycle ... 4-117
4.24 onCyclePoint ... 4-118

4.24.1 Drilling Cycle Types .. 4-119
4.24.2 Cycle parameters .. 4-121

4.24.3 The Cycle Planes/Heights ... 4-122
4.24.4 Common Cycle Functions ... 4-124

4.24.5 Pitch Output with Tapping Cycles .. 4-125
4.25 onCycleEnd ... 4-126

4.26 onRewindMachine .. 4-126
4.27 Common Functions ... 4-127

4.27.1 writeln .. 4-127
4.27.2 writeBlock .. 4-127

4.27.3 toPreciseUnit .. 4-128
4.27.4 force--- ... 4-129

4.27.5 writeRetract .. 4-130

5 Manual NC Commands .. 5-132

5.1 onManualNC and expandManualNC ... 5-133
5.1.1 Sample onManualNC Function ... 5-135

5.1.2 Delay Processing of Manual NC Commands .. 5-135
5.2 onCommand .. 5-137

5.3 onParameter .. 5-138

Table of Contents

 IV
CAM Post Processor Guide 8/28/19

5.4 onPassThrough .. 5-141

6 Debugging ... 6-142

6.1 Overview .. 6-142
6.2 The dump.cps Post Processor .. 6-142

6.3 Debugging using Post Processor Settings .. 6-143
6.3.1 debugMode... 6-143

6.3.2 setWriteInvocations .. 6-143
6.3.3 setWriteStack ... 6-144

6.4 Functions used with Debugging ... 6-144
6.4.1 debug ... 6-145

6.4.2 log .. 6-145
6.4.3 writeln .. 6-145

6.4.4 writeComment .. 6-145
6.4.5 writeDebug ... 6-146

7 Multi-Axis Post Processors .. 7-146
7.1 Adding Basic Multi-Axis Capabilities ... 7-146

7.1.1 Create the Rotary Axes Formats ... 7-146
7.1.2 Create a Multi-Axis Machine Configuration ... 7-147

7.1.3 Output Initial Rotary Position ... 7-149
7.1.4 Create the onRapid5D and onLinear5D Functions .. 7-150

7.1.5 Multi-Axis Common Functions .. 7-151
7.2 Output of Continuous Rotary Axis on a Rotary Scale .. 7-153

7.3 Adjusting the Points for Rotary Heads ... 7-156
7.4 Handling the Singularity Issue in the Post Processor .. 7-161

7.5 Rewinding of the Rotary Axes when Limits are Reached .. 7-163
7.6 Multi-Axis Feedrates ... 7-166

8 Adding Support for Probing ... 8-172
8.1 WCS Probing .. 8-172

8.1.1 Probing Operations ... 8-173
8.1.2 Adding the Core Probing Logic .. 8-175

8.1.3 Adding the Supporting Probing Logic... 8-178
8.2 Geometry Probing ... 8-180

8.3 Inspect Surface .. 8-182
8.3.1 Inspect Surface Operations ... 8-182

8.3.2 Adding the Core Inspect Surface Logic... 8-183
8.3.3 Adding the Supporting Inspect Surface Logic ... 8-184

Introduction to Post Processors 1-1
CAM Post Processor Guide 8/28/19

1 Introduction to Post Processors

1.1 Scope

This manual is intended for those who wish to make their own edits to existing post processors. The

scope of the manual covers everything you will need to get started; an introduction to the recommended

editor (Autodesk Fusion 360 Post Processor Editor), a JavaScript overview (the language of Autodesk

post processors), in-depth coverage of the callback functions (onOpen, onSection, onLinear, etc.), and a

lot more information useful for working with the Autodesk post processor system.

It is expected that you have some programming experience and are knowledgeable in the requirements

of the machine tool that you will be creating a post processor for.

1.2 What is a Post Processor?

 A post processor, sometimes simply referred to as a "post", is the link between the CAM system and

your CNC machine. A CAM system will typically output a neutral intermediate file that contains

information about each toolpath operation like tool data, type of operation (drilling, milling, turning,

etc.), and tool center line data. This intermediate file is fed into the post processor where it's translated

into the language that a CNC machine understands. In most cases this language is a form of ISO/EIA

standard G-code, even though some controls have their own proprietary language or use a more

conversational language. All examples in this manual uses the ISO/EIA G-code format.

If you would like a bit more information on the G-code format the CNC Handbook contains a lot of

useful information including a further explanation of the G-code format in Chapter 5 CNC Programming

Language.

Though most controls recognize the G-code format the machine configuration can be different and some

codes could be supported on one machine and not another, or the codes could be interpreted differently,

for example one machine may support circular interpolation while another requires linear moves to cut

the circle, which is why you will probably need a separate post processor for each of your machine tools.

http://cam.autodesk.com/docs/cncbook/en/
http://cam.autodesk.com/docs/cncbook/en/
http://cam.autodesk.com/docs/cncbook/en/
http://cam.autodesk.com/docs/cncbook/en/

Introduction to Post Processors 1-2
CAM Post Processor Guide 8/28/19

1.3 Finding a Post Processor

The first step in creating a post processor is to find an existing post that comes close to matching your

requirements and start with that post processor as a seed. You will never create a post processor from

scratch. You will find all the generic posts created by Autodesk on our online Post Library. From here

you can search for the machine you are looking for by the machine type, the manufacturer of the

machine or control, or by post processor name.

Other places to check for a post processor include the HSM Post Processor Forum or HSM Post

Processor Ideas.

It is possible that Autodesk has already created a post processor for your machine, but has not officially

released it yet. These posts are considered to be in Beta mode and are awaiting testing from the

community before placing into production. You can visit the HSM Post Processor Ideas site and search

for your post here. This site contains post processor requests from users and links to the posts that are in

Beta mode. You can search for your machine and/or controller to see if there is a post processor

available.

https://cam.autodesk.com/posts/
https://cam.autodesk.com/posts/
https://cam.autodesk.com/posts/
https://cam.autodesk.com/posts/
https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent

Introduction to Post Processors 1-3
CAM Post Processor Guide 8/28/19

Searching For a Post Processor on Ideas or the Forum

Beta Post Processor Found on HSM Post Processor Ideas

If your post processor is not found, then you should search the HSM Post Processor Forum using the

same method you used on the HSM Post Processor Ideas site. The Post Processor Forum is used by the

HSM community to ask questions and help each other out. It is possible that another user has created a

post to run your machine.

You should always take care when running output from a post processor for the first time on your

machine, no matter where the post processor comes from. Even though the post processor refers to

your exact name, it may be setup for options that your machine does not have or the output may not be

in the exact format that you are used to running on the machine.

1.4 Downloading and Installing a Post Processor

Once you find the post processor that closely matches your machine you will need to download it and

install it in a common folder on your computer. If you are working on a network with others then this

should be in a networked folder so everyone in your company has access to the same library of post

processors.

https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218

Introduction to Post Processors 1-4
CAM Post Processor Guide 8/28/19

Selecting the Local Post Processor Folder

When using Fusion 360 it is recommended that you enable cloud posts and place it in your Asset

Library. This way post processors, tool libraries, and templates will be synched across devices and users

at a company.

Enabling Cloud Post Processors in Fusion 360

Introduction to Post Processors 1-5
CAM Post Processor Guide 8/28/19

Double Click the CAMPosts Folder and then Press the Upload Button

Once you have uploaded your post(s) to the Cloud Library you can access these from Fusion 360. You

do this by pressing the Setup button in the Post Process dialog and selecting your post from the

dropdown menu.

Selecting Your Post from the Cloud Library

Introduction to Post Processors 1-6
CAM Post Processor Guide 8/28/19

In all cases you will want to avoid placing posts in the production install folder as these can be

overwritten when HSM is updated. Downloading your posts to a separate folder means that you can

reduce your list of post processors that show up in the Post Process dialog to those that you use in your

shop.

1.5 Creating/Modifying a Post Processor

Once you find a post processor that is close, but not exact to the requirements of your machine you will

need to make modifications to it. The good news is, all of posts are open source and can be modified

without limitation to create the post you need. You have a few options for making the modifications.

1. Make the modifications yourself using this manual as a guide and by asking for assistance from

the HSM community on the HSM Post Processor Forum.

2. Visit HSM Post Processor Ideas and create a request for a post processor for your machine.

Other users can vote for your request for Autodesk to create and add your post to our library.

3. Contact one of our CAM partners who offer post customization services. These partners can be

found on the HSM Post Processor Forum at the top of the page.

Finding HSM CAM Partners

No matter which method you decide to use to create your post processor, you should have enough

information available to define the requirements, which includes as much of the following as you can

gather.

1. A post processor (.cps) that will be used as the seed post.

2. Sample NC code that has run on your machine.

3. The machine/control make and model.

4. The type of machine (mill, lathe, mill/turn, waterjet, etc.).

5. The machine configuration, including linear axes, rotary axes setup, etc.

6. A programming manual for your machine/control.

https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-forum/bd-p/218
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent
https://forums.autodesk.com/t5/hsm-post-processor-ideas/idb-p/985/tab/most-recent

Introduction to Post Processors 1-7
CAM Post Processor Guide 8/28/19

1.6 Testing your Post Processor – Benchmark Parts

When testing your post processor, you will need a part with cutting operations to post against. We have

created standard benchmark parts for this specific purpose. These parts cover the most common

scenarios you will come across when testing a post processor and are available for HSMWorks, Inventor

HSM, and Fusion 360 CAM. They are available in both metric and inch format for all three CAM

systems. There are five different benchmark parts.

• Milling

• Turning and Mill/Turn

• Stock Transfers

• Waterjet-Laser-Plasma

• Probing

You can visit the Autodesk Manufacturing Lounge for more information on the benchmark parts.

1.6.1 Locating the Benchmark Parts

The benchmark parts are available to all users of Autodesk CAM and can be accessed in the Samples

folder for each product.

HSMWorks Sample Parts

C:\Program Files\HSMWorks\examples

http://manufacturinglounge.com/hsm-post-processor-benchmark-files-part-1/

Introduction to Post Processors 1-8
CAM Post Processor Guide 8/28/19

Inventor HSM Sample Parts

C:\Users\Public\Public Documents\Autodesk\Inventor HSM\Examples

Fusion 360 CAM

Select the Data Panel and Double Click on CAM Samples

Introduction to Post Processors 1-9
CAM Post Processor Guide 8/28/19

Fusion 360 CAM (continued)

Double Click on Post Processor to Display the Sample Parts

1.6.2 Milling Benchmark Part

The milling benchmark parts include the following strategies.

• 2D

• Drilling

• Coolant codes

• Manual NC commands

• 3+2 5-axis

• 5-axis simultaneous

Introduction to Post Processors 1-10
CAM Post Processor Guide 8/28/19

Mill Benchmark Part

1.6.3 Mill/Turn Benchmark Part

The mill/turn benchmark parts contain the following strategies.

• Primary and Secondary spindle operations

• Turning

• Axial milling

• Radial milling

• 5-axis milling

Introduction to Post Processors 1-11
CAM Post Processor Guide 8/28/19

Turning and Mill/Turn Benchmark Part

1.6.4 Stock Transfer Benchmark Part

The stock transfer benchmark part contains the following strategies.

• Primary and Secondary spindle operations

• Simple part transfer

• Part transfer with cutoff

Stock Transfer Benchmark Part

The Waterjet-Laser-Plasma benchmark part contains the following strategies.

• Waterjet

• Laser

• Plasma

• Lead in/out

• Radius compensation

Introduction to Post Processors 1-12
CAM Post Processor Guide 8/28/19

Waterjet-Laser-Plasma Benchmark Part

1.6.5 Probing Benchmark Part

The Probing benchmark part contains the following strategies.

• Various probing cycles

Probing Benchmark Part

Autodesk Post Processor Editor 2-13
CAM Post Processor Guide 8/28/19

2 Autodesk Post Processor Editor
Since Fusion 360, Inventor HSM, and HSMWorks post processors are text-based JavaScript code, they

can be edited with any text editor that you are familiar with. There are various editors in the

marketplace that have been optimized for working with programming code such as JavaScript. We

recommend Visual Studio Code with the Autodesk Fusion 360 Post Processor Utility extension. Using

this editor provides the following benefits when working with Autodesk post processors.

• Color coding

• Automatic closing and matching of parenthesis and brackets

• Automatic indentation

• Intelligent code completion

• Automatic syntax checking

• Function List

• Run the post processor directly from editor

• Match the output NC file line to the post processor command that created it

2.1 Installing the Autodesk Post Processor Editor

Before you can use the VSC editor you will need to install it. The easiest way is to visit the Autodesk

Fusion 360 Post Processor Utility page in the Visual Studio Marketplace, where you can download VSC

and then the Autodesk Fusion 360 Post Processor Utility extension. Please note that the Visual Studio

Code site changes quite frequently, so the directions/pictures in this section might not be exactly what

you see on the screen, but the installation steps should still be similar.

Installing Visual Studio Code

https://marketplace.visualstudio.com/items?itemName=Autodesk.hsm-post-processor
https://marketplace.visualstudio.com/items?itemName=Autodesk.hsm-post-processor

Autodesk Post Processor Editor 2-14
CAM Post Processor Guide 8/28/19

This link will take you to the Visual Studio Code installation page. Select the correct version for your

operating system.

Installing the Windows Version of Visual Studio Code

This will download an installation program that you can run to do the actual install. Left click on the

installation program to execute it.

Click the Executable to Install VSC

Follow the instructions displayed on the screen to finish the installation. You should select the defaults

for all questions, though you may want to make this the default code editor and add it to the Windows

Explorer file context menu.

Autodesk Post Processor Editor 2-15
CAM Post Processor Guide 8/28/19

Selecting Installation Options

You can choose to startup the Visual Studio Code editor automatically after it is installed. Once the

editor is opened you can install the Autodesk Fusion 360 Post Processor Utility by opening the

Extensions view in the left pane and searching for Autodesk. Select the Autodesk Fusion 360 Post

Processor Utility to install it.

Downloading the Autodesk Fusion 360 Post Processor Extension

Autodesk Post Processor Editor 2-16
CAM Post Processor Guide 8/28/19

Installing the Autodesk Fusion 360 Post Processor Extension

After installing the Autodesk Fusion 360 Post Processor Utility extension you will want to exit the VSC

editor and then restart it so that the extension is initialized. You are now ready to start editing Autodesk

post processors.

2.2 Autodesk Post Processor Settings

After installing the Autodesk Post Processor editor you will want to setup the editor to match your

preferences. Open the settings file by selecting File->Preferences->Settings. This section will describe

some of the most popular settings, but feel free to explore other settings at your leisure to find any that

you may want to change. The User Settings can also be displayed by using the Ctrl+Comma shortcut.

Displaying the Editor Settings

The settings will be displayed in a separate tab. You can now search for individual settings using the

Search bar. To display the Autodesk Fusion 360 Post Processor Utility settings type in hsm in the search

bar.

Autodesk Post Processor Editor 2-17
CAM Post Processor Guide 8/28/19

Modifying the Editor Settings

There is a description that explains the setting making it easy for you to make the changes.

The following table provides a list of some of the more common settings and their descriptions.

Setting Description

Editor > Minimap Controls if the minimap is shown. The

minimap is a small representation of the entire

file displayed on the right side of the window

and allows you to easily scroll through the file.

Editor: Font Size Size of the editor font.

Editor: Font Weight Weight (thickness) of the editor font.

Editor: Detect Indentation Automatically detects the editor.tabSize and

editor.insertSpaces settings when opening a

file.

Editor: Insert Spaces When checked, spaces will be inserted into the

file when the tab key is pressed.

Editor: Tab Size Sets the number of spaces a tab is equal to. The

standard setting for Autodesk post processors is

2.

Editor > Parameter Hints Enables a pop-up that shows parameter

documentation and style information as you

type.

Editor: Auto Closing Brackets Controls if the editor should automatically close

brackets after opening them.

Extensions: Auto Check Update or Auto Updates Automatically (check for) update extensions.

Files: Associations Associates file types with a programming

language. This must have "*.cps": "javascript"

Autodesk Post Processor Editor 2-18
CAM Post Processor Guide 8/28/19

Setting Description

set in it to enable the automatic features of the

editor in Autodesk post processors.

Workbench: Color Theme Defines the color theme for the editor. This

setting can be changed using the File-

>Preferences->Color theme menu.

HSMPost Utility: Auto Update Function List Updates the function list automatically, without

the need for refreshing.

HSMPost Utility: Sort Function List Alphabetically When checked the function list will be sorted.

Unchecked will display the function names in

the order that they are defined.

HSMPost Utility: Color Output When checked, rapid, feedrate, and circular

blocks will be displayed in color.

HSMPost Utility: Rapid Color Color for rapid move blocks.

HSMPost Utility: Linear Color Color for feedrate move blocks.

HSMPost Utility: Circular Color Color for circular move blocks.

HSMPost Utility: Enable Auto Line Selection Enables the automatic selection of the line in

the post processor that generated the selected

line in the output NC file.

HSMPost Utility: Output Units Sets the desired output units when post

processing

HSMPost Utility: Shorten Output Code Limits the number of blocks output when

posting, making it easier to navigate.

HSMPost Utility: Post On CNCSelection When checked, post processing will occur as

soon as a CNC file is selected.

HSMPost Utility: Post On Save Automatically run the post processor when it is

saved, only if the NC output file window is

open.
Commonly Changed User Settings

2.3 Left Side Flyout

On the left side of the editor window is a tab that will open different flyout dialogs. The features

contained in the flyout dialogs are quite beneficial while editing a post processor and are explained in

this section. The Source Control flyout is not used when editing post processors and will not be

discussed.

Autodesk Post Processor Editor 2-19
CAM Post Processor Guide 8/28/19

Left Side Flyout Dialog

2.3.1 Explorer Flyout

The Explorer flyout contains expandable lists that are used to display the open editors, folders, variables,

functions, and CNC selector. The arrow ► at the left of each entry is used to expand or collapse the list.

List Description

OPEN EDITORS Lists the files that are open in this instance of the

VSC editor. Any files that have been changed,

but not been saved will be marked with a bullet

(•). The number of changed files that have not

been saved is displayed in the Explorer icon.

NO FOLDERS OPEN You can open a folder for quick access to all of

the post processors in the folder. Expanding the

folders will display the Open Folder button that

can be used to open a folder. Clicking on a file in

the open folder will automatically open it in the

editor. Take note that if a folder is opened, then

all opened files in the editor will first be closed

and you will be prompted to save any that have

been changed.

OUTLINE Lists the functions defined in the post processor

and the variables defined in each function.

Expanding the function by pressing the arrow ►

to the left of the function name will display the

variables defined in the function. You can select

any of the variables to go to the line where it is

defined.

Autodesk Post Processor Editor 2-20
CAM Post Processor Guide 8/28/19

List Description

CNC SELECTOR Contains the Autodesk intermediate files (*.cnc)

that are available to the post processor from the

VSC editor. This list is further explained in the

Running/Debugging the Post section of this

chapter.

FUNCTION LIST Expanding the function list will display the

functions defined in the active post processor.

The functions will either be listed in alphabetical

order or by the order they appear in the post

processor depending on the HSMPost Utility:

Sort Function List Alphabetically setting. You

can select on a function in this list and the cursor

will be placed at the beginning of this function in

the editor window and while traversing through

the post processor the function that the cursor is

in will be marked with an arrow ►, making it

easy for you to determine what function the

active line is in.

POST PROPERTIES Contains the Property Table for the post

processor, similar to the Property Table displayed

when running the post from CAM. This list is

further explained in the Running/Debugging the

Post section of this chapter.

VARIABLE LIST Lists the variable types supported by the post

processor, such as Array, Format, Vector, etc. It

does not contain a list of variables defined in the

post processor. Expanding the variable type by

pressing the arrow ►to the left of it will display

the functions associated with the variable type.
Explore Flyout Selections

 Open Editors Opening a Folder Open Folder File List

Autodesk Post Processor Editor 2-21
CAM Post Processor Guide 8/28/19

 Outline CNC Selector Function List

 Post Properties Variable List

2.3.2 Search Flyout

You can search for a text string in the current file or in all of the opened files. To search for the text

string in the current file you should use the Find popup window accessed by pressing the Ctrl+F keys.

Ctrl+F Find Popup – Search for a Text String in the Current File

As you type in a text string the editor will automatically display and highlight the next occurrence of the

text in the file. The number of occurrences of the text string in the file will be displayed to the right of

the text field. You can use the Enter key to search for the next occurrence of the string or press the

arrow keys to search forwards → and backwards ← through the file. If you use the Enter key, then the

keyboard focus must be in the Find field.

Using the Find Popup to Search for Text Strings

Autodesk Post Processor Editor 2-22
CAM Post Processor Guide 8/28/19

The Search flyout searches for a file in the opened files and in the files located in an open folder (refer

to the Explorer flyout to see how to open a folder). The Search dialog will be displayed when you press

the Search button.

Search Flyout – Search for a Text String in Multiple Files

Entering a text string to search for and then pressing the Enter key will display the files that contain the

text string and the number of instances of the text string in each file. You can expand the file in the list

by pressing the arrow key ► and each instance of the text string found in the selected file will be

displayed. Clicking on one of the instances causes the editor to go to that line in the file and

automatically open the file if it is not already opened. If you don't make any changes to the file and then

select the text string in another file, then the first file will be closed before opening the next file. An

unchanged file opened from the Search flyout will have its name italicized in the editor window.

Searching for a Text String in the Opened Files

There are options that are available when searching for text strings. These options are controlled using

the icons in the Search dialog and Find popup.

Icon Description

When enabled, the case of the search string must be the same as the matching text

string in the file.

 When enabled, the entire word of the matching text string in the file must be the

same as search string. When disabled, it will search for the occurrence of the search

string within words.

 When enabled, the '.' character can be used as a single character wildcard and the '*'

character can be used as a multi-character wildcard in the search string.

Autodesk Post Processor Editor 2-23
CAM Post Processor Guide 8/28/19

Icon Description

 Search forward in the file. In the Find popup only.

 Search backward in the file. In the Find popup only.

 Searches for the text string only in the selected text in the file. In the Find popup

window only.

 Closes the Find popup window.

 Refresh the results window. In the Search flyout only.

Collapse all expanded files in the results window. In the Search flyout only.

 Displays fields that allow you to include or exclude certain files from searches. In

the Search flyout only.

Displays the Replace field, allowing you to replace the Search text with the Replace

field text.

Replaces the current (highlighted) occurrence of the Search text with the Replace

field text. Hitting the Enter key while in the Replace field performs the same

replacement. In the Find popup window only.

Replaces all occurrences of the Search text with the Replace field text. When

initiated from the Search flyout, all occurrences of the text in all files listed in the

Results window will be replaced.
Search and Replace Options

2.3.3 Bookmarks Flyout

Okay, so the Bookmarks flyout is actually a Breakpoints flyout, but since JavaScript does not have an

interactive debugger we are going to use it for adding bookmarks to the opened files. Placing the cursor

to the left of the line number where you want to set a bookmark will display a red circle and then

clicking at this position will add the bookmark.

To see the active bookmarks you can open the Bookmarks flyout and expand the BreakPoints window.

You can then go directly to a line that is bookmarked by selecting that line in the Bookmarks flyout.

Bookmarks set in all opened files will be displayed in the flyout and the file that the bookmark is set in

will automatically be made the active window when the bookmark is selected.

Using the Bookmarks Flyout

Autodesk Post Processor Editor 2-24
CAM Post Processor Guide 8/28/19

2.3.4 Extensions Flyout

Visual Studio Code is an open source editor and there are many extensions that have been added to it by

the community. For example, the Autodesk Fustion 360 Post Processor Utility is an extension to this

editor. By opening the Extensions flyout you can see what extensions you have installed and what

extensions have updates waiting for them.

Viewing Installed Extensions

If there is an Update to x.x.x button displayed with the extension you can press this button to install the

latest version of the associated extension.

You can search the Visual Studio Marketplace for extensions that are beneficial for your editing style by

typing in a name in the Search Extensions in Marketplace field. For example, if you want a more

dedicated way to set bookmarks you can type in bookmark in this field and all extensions dealing with

adding bookmarks will be displayed. You can press the green Install button to install the extension.

You can also search for extensions online at the Visual Studio Marketplace.

https://marketplace.visualstudio.com/

Autodesk Post Processor Editor 2-25
CAM Post Processor Guide 8/28/19

Viewing Extensions in the Online Marketplace

2.4 Autodesk Post Processor Editor Features

The Autodesk Post Processor editor has features to enhance the ease of editing of post processor

JavaScript files. One example is the color coding of the text, variables are in one color, functions in

another, JavaScript reserved words in yet another, and so on. The colors of each entity is based on the

Workbench Color Theme setting.

This section will go over some of the more commonly used features. You are sure to discover other

features as you use the editor.

2.4.1 Auto Completion

As you type the name of a variable or function you will notice a popup window that will show you

previously used names that match the text as it is typed in. Selecting one of the suggestions by using the

arrow keys to highlight the name and then the tab key to select it will insert that name into the spot

where you are typing.

If the Editor: Parameter Hints setting is set to true, then when you type in the name of a function,

including the opening parenthesis, you will be supplied the names of the function's arguments for

reference.

Using Auto Completion

2.4.2 Syntax Checking

If you have a syntax error while editing a file, the editor is smart enough to flag the error by

incrementing the error count at the bottom left of the window footer and marking the problem in the file

with a red squiggly line. You can open the Problems window by selecting the X in the window footer to

see all lines that have a syntax error. Clicking on the line displaying the error will then take you directly

to that line, so that you can resolve the error.

You can close the window by pressing on the X in the window footer or the X at the top right of the

Problems window.

Autodesk Post Processor Editor 2-26
CAM Post Processor Guide 8/28/19

Displaying Syntax Errors

2.4.3 Hiding Sections of Code

You can hide code that is enclosed in braces {} by positioning the cursor to the right of the line number

on the line with the opening brace and then pressing the [-] icon. The code can be expanded again by

pressing the [+] icon. Note that the icons will not be displayed unless the cursor is placed in the area

between the line number and the editing window.

Hiding Sections of Code

2.4.4 Matching Brackets

If you place the edit cursor at a parenthesis (()), bracket ([]), or brace ({}) the editor will highlight the

selected enclosure as well as the opening/closing matching enclosure character. If there are multiple

enclosure characters right next to each other, then the enclosure following the edit cursor will be

selected. If the enclosure character does not highlight, then this means that there is not a matching

opening/closing enclosure.

Autodesk Post Processor Editor 2-27
CAM Post Processor Guide 8/28/19

Matching Parenthesis

2.4.5 Go to Line Number

You can go to a specific line number in the file by pressing the Ctrl+G keys and then typing in the line

number.

Go to Line Number

2.4.6 Opening a File in a Separate Window

You can open a file in the current window by selecting the File->Open File… menu from the task bar or

by pressing the Ctrl+O keys. You can open the active file in a separate VSC window by pressing the

Ctrl+K keys and then pressing the O key. The file will be opened in the a new window and remain open

in the active window. You can also open a new VSC window by selecting the File->New Window menu

or by pressing the Ctrl+Shift+N keys.

Open Separate VSC Window

2.4.7 Shortcut Keys

You can display the assigned Shortcut Keys by pressing the F1 key and then typing in key to display all

commands referencing the key string. Select the Preferences: Open Keyboard Shortcuts menu. You

can also press the Ctrl+K Ctrl+S keys in sequence to display the Shortcut Keys window.

Autodesk Post Processor Editor 2-28
CAM Post Processor Guide 8/28/19

Display the Shortcut Keys

Shortcut Key Assignments

Modifications and/or additions to the Shortcut Key assignments can be made by selecting the

keybindings.json link at the top of the page. This will open a split window display that displays the

default Shortcut Keys in the left window and the user defined Shortcut Keys in the right window. Use

the same procedure as modifying a setting to modify a Shortcut Key, by copying the binding definition

from the left window into the right window and making the desired changes. Be sure to save the

keybindings.json file after making your changes.

The format of the keystrokes that represent a single Shortcut is defined in the following table.

Shortcut Sample Description

key F1 Press the single key.

key+key Ctrl+Shift+Enter key is the name of the key to press. The + character means that

the keys must be pressed at the same time. The + key is not

pressed.

key key Ctrl+K Ctrl+S The keys should be pressed in sequence, one after the other.

Each key can be a combination of multiple keys that are pressed

at the same time as explained above. Unless Shift is part of the

key sequence, then lower case letters are being specified.
Shorcut Key Syntax

Autodesk Post Processor Editor 2-29
CAM Post Processor Guide 8/28/19

2.4.8 Running Commands

The commands accessible by shortcut keys or the menus can be found and run from the command popup

dialog and are accessed in the editor by pressing the F1 key. Once the command popup is displayed you

can search for commands by typing in text in the search line. The commands that match the search will

be displayed along with the Shortcut Keys that are assigned to the commands. Select on the command to

run it.

Running a Command

2.5 Running/Debugging the Post

The Autodesk Fusion 360 Post Processor Utility extension allows you to run the post processor that you

are editing directly from the editor and to debug the post by matching the output lines in the NC file with

the code line that generated the output. You can run the post against the provided intermediate files

generated from the Benchmark Parts or you can create your own intermediate file to run the post against.

2.5.1 Autodesk Post Processor Commands

There are built-in commands that pertain to running the post processor. These commands are accessed

by pressing the F1 key and typing HSM in the search field.

Displaying the Autodesk Post Processor Commands

The following table describes the available commands.

Autodesk Post Processor Editor 2-30
CAM Post Processor Guide 8/28/19

Command Description

Post Utility Displays a menu where you can post process the

selected intermediate (CNC) file against the open

post processor, select a new CNC file, or display

the Autodesk Post Help window. You can also

use the shortcut Ctrl+Alt+G to run the post

processor.

Change post executable Sets the location of the post processor engine

executable.

Show debugged code Displays the entry functions that are called and

the line numbers that generated the block in the

output NC file. This is the same output that is

displayed when you call the setWriteStack(true)

and setWriteInvocations(true) functions.

Delete CNC file This command cannot be run from the

Commands menu. Right clicking on a CNC file

in the CNC Selection list and selecting Delete

CNC File will delete the file and remove it from

the list.

Disable auto line selection Disables the feature of automatically displaying

the line in the post processor that generated the

selected line in the NC output file.

Download CNC exporting post processor Downloads the Exporting Post Processor used

for generating your own CNC files for testing.

Post help Displays the online AutoDesk CAM Post

Processor Documentation web page.
The Autodesk Post Processor Commands

2.5.2 The Post Processor Properties

You can display the properties associated with the open post processor by opening the Explorer flyout

and expanding the Post Properties list. Clicking on a property will prompt you to change the property.

The symbol will be displayed next to the property if it has been changed from the default value.

If you add a new property to the post or for some reason the properties don’t display, you can press the

yellow refresh symbol in the Post Properties header to refresh the displayed properties.

Autodesk Post Processor Editor 2-31
CAM Post Processor Guide 8/28/19

Modifying the Post Properties

2.5.3 Running the Post Processor

To run the post processor that is open in the editor you can use the Ctrl+Alt+G shortcut or run the Post

Utility from the Command window as described in the previous section. First you will need to select the

intermediate CNC file to run the post against. You select the CNC file by opening the Explorer flyout

and expanding the CNC Selector list until you find the desired CNC file.

Post the Selected CNC File Against the Active Post

You can also select the CNC file from the Post Utility menu.

Select the CNC File or Post Processor Using the Post Utility Command

Autodesk Post Processor Editor 2-32
CAM Post Processor Guide 8/28/19

If running a post processor for the first time in the editor it is possible that the location of the post engine

executable (post.exe) is not known. In this case you will see the following message displayed.

You can press the Browse… button to search for post.exe. The executable will be in one of the

following locations depending on the version of HSM being run.

HSM Version Post Executable Location

Fusion C:\User\username\AppData\Local\Autodesk\webdeploy\production\(id)\Applications\CAM360

username is your user name that you logged in as. (id) is a unique and long name that changes

depending on the version of Fusion that you have installed. You will usually select the folder

with the latest date.

Inventor C:\Program Files\Autodesk\InventorHSM yyyy

yyyy is the version number (year) of Inventor.

HSMWorks C:\Program Files\HSMWorks

Post Executable Locations

Once you have posted against the CNC file, the output NC file or Log file will be displayed in the right

panel of the split screen. When the HSMPostUtility: Enable Auto Line Selection setting is true, then

clicking twice on a line in the output NC file will highlight the line in the post processor that generated

the output. The second click must be on a different character on the same output line to highlight the

line. Then, by clicking on a different character in the same line you will be walked through the stack of

functions that were called in the generation of the output.

Autodesk Post Processor Editor 2-33
CAM Post Processor Guide 8/28/19

Output NC File, Click Twice on Output Line to See Code that Generated Output

2.5.4 Creating Your Own CNC Intermediate Files

The Autodesk Post Processor extension comes with built-in CNC intermediate files that are generated

using the HSM Benchmark Parts. These can be used for testing most aspects of the post processor, but

there are times when you will need to test specific scenarios. For these cases you can create your own

CNC file to use as input.

First you will need to download the export cnc file to vs code.cps post processor. You can do this by

running the Download CNC exporting post processor command.

Download the CNC Exporting Post Processor

A file browser will come up that allows you to select the folder where you want to download the post.

Follow the directions in the Downloading and Installing a Post Processor section for installing a post

processor on your system.

Once the post processor is installed you will want to post process the operations you want to use for

testing. The CNC exporting post processor is run just like any other Autodesk post processor, except it

will not generate NC code, but will rather create a copy of the CNC file from the Autodesk CAM system

in the Custom location of the CNC Selector folder. Most posts use a number for the output file name, it

is recommended that you give the CNC file a unique name that describes the operations that were used

to generate it.

Create a Custom CNC Intermediate File

Once you click the yellow refresh button you should see the CNC file in the Custom branch of the CNC

Selector list and can use it when post processing from the VSC editor. If you decide that you no longer

JavaScript Overview 3-34
CAM Post Processor Guide 8/28/19

need a custom CNC intermediate file you can delete it by right clicking on the CNC file and select

Delete CNC File.

 Using a Custom CNC Intermediate File Deleting a Custom CNC Intermediate File

3 JavaScript Overview

3.1 Overview

Autodesk post processors are written using the JavaScript language. It resembles the C, C++, and Java

programming languages, is interpreted rather than being a compiled language, and is object-orientated.

JavaScript as it is used for developing post processors is fairly simple to learn and understand, but still

retains its complex nature for more advanced programmers.

This chapter covers the basics of the JavaScript language and conventions used by Autodesk post

processors. There are many web sites that document the JavaScript language. The ELOQUENT

JAVASCRIPT site has a nicely laid out format. If you prefer a hard copy JavaScript guide, then the

JavaScript the Definitive Guide, Author: David Flanagan, Publisher: O’Reilly is recommended.

Whichever manual you use, you will want to focus on the core syntax of JavaScript and ignore the

browser and client-side aspects of the language.

The Autodesk post processor documentation is provided as the post.chm file with HSMWorks and

Inventor HSM or you can visit the Autodesk CAM Post Processor Documentation web site. You will

find that the post.chm version of the documentation is easier to view, since it has a working Index.

3.2 JavaScript Syntax

JavaScript is a case sensitive language, meaning that all functions, variables, and any other identifiers

must always be typed exactly the same with regards to lower and uppercase letters.

currentCoolant = 7;

currentCoolant = 8;

currentcoolant = 9;
Case Sensitive Definition of 3 Different Variables

http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://cam.autodesk.com/posts/reference/index.html

JavaScript Overview 3-35
CAM Post Processor Guide 8/28/19

JavaScript ignores spaces and new lines between variables, operators, names, and delimiting characters.

Variable and function names cannot have spaces in them, as this would create separate entities.

Commands can be continued onto multiple lines and are terminated with a semicolon (;) to mark the end

of the logical command. If you are defining a string literal within quotes, then the literal should be

defined on a single line and not on multiple lines. If a text string is too long for a single line, then it

should be concatenated using an operation.

 message = "The 3 inch bore needs to be probed prior to starting " +

 "the next operation.";
Breaking Up a Text String onto Multiple Lines

There are two methods of defining comments in JavaScript. You can either enclose comments between

the /* and */ characters, which will treat all text between these delimiters as a comment, or place the //

characters prior to the comment text.

The /* comment */ format is typically used as the descriptive header of a function or to block out

multiple lines of code. Any characters on the line that follow the // characters are treated as a comment,

so you can have a single comment line or add a comment to the end of a JavaScript statement.

/**

 Output a comment.

*/

function writeComment(text) {

 writeln(formatComment(text)); // write out comment line

}

..

/*

 switch (unit) {

 case IN:

 writeBlock(gUnitModal.format(20));

 break;

 case MM:

 writeBlock(gUnitModal.format(21));

 break;

 }

*/
Comment Lines

Using indentation for function contents, if blocks, loops and continuation lines is recommended as this

makes it easier to visualize the code. Tab characters, though supported by JavaScript, are discouraged

from being used. It is preferred to use virtual tab stops of two spaces for indenting code in post

processor code. Most editors, including the Autodesk Post Processor Editor can be setup to

automatically convert tab characters to spaces that will align each indent at two spaces. Please refer to

the Post Processor Editor chapter for an explanation on how to setup the Autodesk recommended editor.

function test (input) {

JavaScript Overview 3-36
CAM Post Processor Guide 8/28/19

 // indent 2 spaces inside of function

 if (input == 1) {

 writeBlock(// indent 2 more spaces in if block or loop

 gAbsIncModal.format(90), // indent 2 more spaces for continuation lines

 gMotionModal.format(0)

);

 }

}
Indent Code 2 Spaces Inside Function, If Block, Loop, and Continuation Line

3.3 Variables

Variables are simply names associated with a value. The value can be a number, string, boolean, array,

or object. Variables in JavaScript are untyped, meaning that they are defined by the value that they have

assigned to them and the value type can change throughout the program. For example, you can assign a

number to a variable and later in the program you can assign the same variable a string value. The var

keyword is used to define a variable.

If a variable is not assigned a value, then it will be assigned the special value of undefined.

var a; // define variable 'a', it will have the value of undefined

var b = 1; // assign a value of 1 to the variable 'b'

var c = "text"; // assign a text string to the variable 'c'

c = 2.5; // 'c' now contains a number instead of string
Variable Definitions

While you can include multiple variable declarations on the same var line, this is against the standard

used for post processors and is not recommended. You can also implicitly create a variable simply by

assigning a value to the variable name without using the var keyword, but is also not recommended.

When declaring a new variable, be sure to not use the same name as a JavaScript or Post Kernel

keyword, for example do not name it var, for, cycle, currentSection, etc. Refer to the appropriate

documentation for a list of keywords/variables allocated in JavaScript or the Post Kernel.

JavaScript supports both global variables and local variables. A global variable is defined outside the

scope of a function, for example at the top of the file prior to defining any functions. Global variables

are accessible to all functions within the program and will have the same value from function to

function. Local variables are only accessible from within the function that they are defined. You can

use the same name for local variables in multiple functions and they will each have their own unique

value in the separate functions. Unlike the C and C++ languages, local variables defined within an if

block or loop are accessible to the entire function and are not local to the block that they are defined in.

3.3.1 Numbers

Besides containing a standard numeric value, a variable assigned to a number creates a Number object.

For this discussion, we will consider an object a variable with associated functions. These functions are

specific to numbers and are listed in the following table.

JavaScript Overview 3-37
CAM Post Processor Guide 8/28/19

Function Description Returns

toExponential(digits) Format a number using exponential

notation

String representation of number

toFixed(digits) Format a number with a fixed number

of digits

String representation of number

toLocaleString() Format a number according to locale

conventions

String representation of number

toPrecision(digits) Format a number using either a fixed

number of digits or using exponential

notation depending on value of

number

String representation of number

toString() Format a number String representation of number

Number Object Functions

var a = 12.12345;

b = a.toExponential(2); // b = "1.21e+1"

b = a.toFixed(3); // b = "12.123"

b = a.toString(); // b = "12.12345"
Sample Number Output

The JavaScript built-in Math object contains functions and constants that apply to numbers. The

following table lists the Math functions and constants that are most likely to be used in a post processor.

All Math functions return a value.

Function Return value

Math.abs(x) Absolute value of x

Math.acos(x) Arc cosine of x in radians

Math.asin(x) Arc sine of x in radians

Math.atan(x) Arc tangent of x in radians

Math.atan2(y, x) Counterclockwise angle between the positive X-axis and the point x,y in radians

Math.ceil(x) Rounds up x to the next integer

Math.cos(x) Cosine of x

Math.floor(x) Rounds down x to the next integer

Math.max(args) The maximum value of the input arguments

Math.min(args) The minimum value of the input arguments

Math.PI The value of PI, approximately 3.14159

Math.pow(x, y) x raised to the power of y

Math.round(x) Rounds x to the nearest integer

Math.sin(x) Sine of x

Math.sqrt(x) Square root of x

Math.tan(x) Tangent of x

Math.NaN The value corresponding to the not-a-number property

Math Object

a = Math.sqrt(4); // a = 2

a = Math.round(4.59); // a = 5

JavaScript Overview 3-38
CAM Post Processor Guide 8/28/19

a = Math.floor(4.59); // a = 4

a = Math.PI; // a = 3.14159

a = Math.cos(toRad(45)); // a = .7071

a = toDeg(Math.acos(.866)); // a = 60
Sample Math Object Output

The Math trigonometric functions all work in radians. As a matter of fact, most functions that pass

angles in the post processor work in radians. There are kernel supplied functions that are available for

converting between radians and degrees. toDeg(x) returns the degree equivalent of the radian value x

and conversely the toRad(x) function returns the radian equivalent of the degree value x.

3.3.2 Strings

Variables assigned a text string will create a String object, which contain a full complement of functions

that can be used to manipulate the string. These functions are specific to strings and are listed in the

following table. The table details the basic usage of these functions as you would use them in a post

processor. Some of the functions accept a RegExp object which is not covered in this manual, please

refer to dedicated JavaScript manual for a description of this object.

Function Description Returns

charAt(n) Returns a single character at position n The nth character

indexOf(substring, start) Finds the substring within the string.

start is optional and specifies the

starting location within the string to

start the search at.

The location of the first occurrence of

substring within the string.

lastIndexOf(substring, start) Finds the last occurrence of substring

within the string. start is optional and

specifies the starting location within
the string to start the search at.

The location of the last occurrence of

substring within the string.

length Returns the length of the string.

length is not a function, but rather a

property of a string and does not use ()

in its syntax.

The length of the string

localeCompare(target) Compares the string with target string. A negative number if string is less

than target, 0 if the strings are

identical, and a positive number if

string is greater than target

replace(pattern, replacement) Replaces the pattern text within the

string with the replacement text.

The updated string.

slice(start, end) Creates a substring from the string

consisting of the start character up to,

but not including the end character of

the string.

A substring containing the text from

string starting at start and ending at

end-1. A negative value for start or

end specifies a position from the end
of the string; -1 is the last character, -2

is the second to last character, etc.

split(delimiter, limit) Splits a string at each occurrence of

the delimiter string.

An array of strings created by splitting

string into substrings at the delimiter.

A maximum of limit substrings will be

created.

toLocaleLowerCase() Converts the string to all lowercase

letters in a locale-specific method.

Lowercase string.

JavaScript Overview 3-39
CAM Post Processor Guide 8/28/19

Function Description Returns

toLocaleUpperCase() Converts the string to all uppercase

letters in a locale-specific method.

Uppercase string.

toLowerCase() Converts the string to all lowercase

letters.

Lowercase string.

toUpperCase() Converts the string to all uppercase

letters.

Uppercase string.

String Object Functions

var a = "First, Second, Third";

b = a.charAt(3); // b = "s"

b = a.indexOf("Second"); // b = 7

b = a.length; // b = 20

b = a.localeCompare("ABC"); // b = 5;

b = a.replace(/,/g, "-"); // b = "First- Second- Third"

b = a.slice(0, -7); // b = "First, Second"

b = a.split(","); // b[0] = "First", b[1] = "Second", b[2] = "Third";

b = a.toLowerCase() ; // b = "first, second, third"

b = a.toUpperCase(); // b = "FIRST, SECOND, THIRD"
Sample String Output

3.3.3 Booleans

Booleans are the simplest of the variable types. They contain a value of either true of false, which are

JavaScript keywords.

var a = true; // 'a' is defined as a boolean

if (a) {

 // processes the code in this if block since 'a' is 'true'

}
Sample Boolean Assignment

3.3.4 Arrays

An array is a composite data type that stores values in consecutive order. Each value stored in the array

is considered an element of the array and the position within an array is called an index. Each element

of an array can be any variable type and each element can have a different variable type than the other

elements in the array.

An array, like numbers and strings, are considered an object with functions associated with it. You can

define an array using two different methods, as an empty array using a new Array object, or by creating

an array literal with defined values for the array. You can specify the initial size of the array when

defining an Array object. The initial size of an array defined with values is the number of values

contained in the initialization.

var a = new Array(); // creates a blank array, all values are assigned undefined

JavaScript Overview 3-40
CAM Post Processor Guide 8/28/19

var a = new Array(10); // creates a blank array with 10 elements

var a = [true, "a", 3.17]; // creates an array with the first 3 elements assigned

var a = [{x:1, y:2}, {x:3, y:4}, {x:5, y:6}]; // creates an array of 3 xy objects
Array Definitions

You can access an array element by using the [] brackets. The name of the array will appear to the left

of the brackets and the index to the element within the array inside of the brackets. The index can be a

simple number or an equation.

var a = [1, 2, "text", false];

b = a[0]; // b = 1

a[5] = "next"; // a = [1, 2, "text", false, "next"]

b = a[2+a[0]]; // b = false;
Accessing Elements Within an Array

The Array object has the following functions associated with it.

Function Description Returns

concat(values) Appends the values to an array. Original array with concatenated

elements

join(separator) Combines all elements of an array into

a string. separator is optional and

specifies the string used to separate the

elements of the array. The default is a
comma.

String containing array elements.

length Returns the allocated size of the array.

length is not a function, but rather a

property of an array and does not use

() in its syntax.

The size of the array.

pop() Pops the last element from the array

and decreases the size of the array by

1.

The value of the last element of the

array.

push(values) Pushes the values onto the array and

increases the size of the array by the

number of values.

Updated size of array.

reverse() Reverses the order of the elements of

the array.

Returns nothing, but rather modifies

the original array.

shift(values) Removes the first element from the

array and decreases the size of the

array by 1.

The value of the first element of the

array.

slice(start, end) Creates a new array consisting of the
start element up to, but not including

the end element of the array.

An array containing the elements from
array starting at start and ending at

end-1. A negative value for start or

end specifies a position from the end

of the array; -1 is the last element, -2

is the second to last element, etc.

sort(function) Sorts the elements of the array. The

original array will be modified. The

sort method uses an alphabetical order

of elements converted to strings by

default. You can specify a function

The sorted array.

JavaScript Overview 3-41
CAM Post Processor Guide 8/28/19

Function Description Returns
that overrides the default sorting

algorithm.

toLocaleString() Format an array according to locale

conventions

String representation of array

toString Format an array String representation of array

unshift() Adds the values to the beginning of an

array and increases the size of the

array by the number of values.

Updated size of array.

Array Object Functions

var a = [1, 2, 3, 4, 5, 6, 7, 8];

b = a.concat(9, 10, 11); // b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

b = a.join(", "); // b = "1, 2, 3, 4, 5, 6, 7, 8"

b = a.length; // b = 8

a.push(9, 10, 11) // a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

b = a.pop(); // a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], b = 10

a.reverse(); // a = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

b = a.unshift(12, 11); // a = [12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1], b = 12

b = a.shift(); // a = [11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1], b = 12

b = a.slice(4, 7); // b = [7, 6, 5]

a.sort(function(a, b) { // a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

 return a-b;

 });

b = a.toString() // b = "1,2,3,4,5,6,7,8,9,10,11"
Sample Array Output

3.3.5 Objects

An Object is similar to an array in that it stores multiple values within a single variable. The difference

is that objects use a name for each sub-entity rather than relying on an index pointer into an array. The

properties table in a post processor is an object. You can define an object using two different methods,

explicitly using the Object keyword, or implicitly by creating an object literal with defined names and

values for the object. Each named entity within an object can be any type of variable, number, string,

array, boolean, and another object. Objects can also be stored in an array.

Objects can be expanded to include additional named elements at any time and are not limited to the

named elements when they are created.

var a = new Object(); // creates a blank object, without named elements

var a = {x:1, y:2, z:3}; // creates an object for storing coordinates

a.feed = 10.0; // adds the 'feed' element to the 'a' Object

var a = [{x:1, y:2}, {x:3, y:4}, {x:5, y:6}]; // creates an array of 3 xy objects
Object Definitions

JavaScript Overview 3-42
CAM Post Processor Guide 8/28/19

3.3.6 The Vector Object

The Vector object is built-in to the post processor and is used to store and work with vectors. The vector

components are stored in the x, y, z elements of the Vector object. Certain post processor variables are

stored as vectors and some functions require vectors as input. A Vector object is created in the same

manner as any other object. Vector objects are typically used to store and work on vectors, spatial

points, and rotary angles.

var a = new Vector(); // creates a blank Vector object

var a = new Vector(1, 0, 0); // creates an X-axis vector {x:1, y:0, z:0}

a.x = -1; // assigns -1 to the x element of the vector

setWorkPlane(new Vector(0, 0, 0)); // defines a null vector inline
Sample Vector Definitions

The following tables describe the attributes and functions contained in the Vector object. Since an

attribute is simply a value contained in the Vector object, it does not have an argument.

Attribute Description

abs Contains the absolute coordinates of

the vector

length Contains the length of the vector

length2

negated Contains the negated vector

normalized Contains the normalized/unit vector

x Contains the X-component

y Contains the Y component

z Contains the Z component

Vector Attributes

You can directly modify an attribute of a vector, but if you do then the remaining attributes will not be

updated. For example, if you directly store a value in the x attribute, vec.x = .707, the length attribute of

the vector will not be updated. You should use the vec.setX(.707) method instead.

If the Returns column in the following table has Implicit, then there is no return value, rather the Vector

object associated with the function is modified implicitly. For this reason, if you are going to nest a

Vector function within an expression, do not use the Implicit function, but rather the equivalent function

that returns a vector.

Function Description Returns

divide(value) Divides each component of the object

vector by the value

Implicit

getCoordinate(coordinate) Returns the value of the vector

component (0=x, 1=y, 2=z)

Component of vector

getMaximum() Determines the largest component

value in the vector

Maximum component value

getMinimum() Determines the minimum component

value in the vector

Minimum component value

getNegated() Calculates the negated vector Vector at 180 degrees to the object

vector (vector * -1)

JavaScript Overview 3-43
CAM Post Processor Guide 8/28/19

Function Description Returns

getNormalized() Calculates the normalized/unit vector Normalized or unit vector

getX() Returns the X-coordinate of the vector X-coordinate

getXYAngle() Calculates the angle of the vector in

the XY-plane

Angle of vector in XY-plane

getY() Returns the Y-coordinate of the vector Y-coordinate

getZ() Returns the Z-coordinate of the vector Z-coordinate

getZAngle() Calculates the Z-angle of the vector

relative to the XY-plane

Z-angle of vector relative to the XY-

plane

isZero() Determines if the vector is a null

vector (0,0,0)

True if it is a null vector

multiply(value) Multiplies each component of the

vector by the value

Implicit

negate() Multiplies each component of the

vector by -1. Creates a vector at 180

degrees to the object vector

Implicit

setCoordinate(coordinate, value) Sets the value of the vector component

(0=x, 1=y, 2=z)

Implicit

setX() Sets the X-coordinate of the vector Implicit

setY() Sets the Y-coordinate of the vector Implicit

setZ() Sets the Z-coordinate of the vector Implicit

toDeg() Converts radians to degrees Angles in degrees

toRad() Converts degrees to radians Angles in radians

toString() Formats the vector as a string, e.g.

 "(1, 2, 3)"

String representation of vector

Vector Object Functions

Static functions do not require an associated Vector object.

Function Description Returns

Vector.cross(left, right) Calculates the cross product of two

vectors

Vector perpendicular to the two

vectors

Vector.diff(left, right) Calculates the difference between two

vectors

Left vector minus right vector

Vector.dot(left, right) Calculates the dot product of the two

vectors

Cosine of angle between the two

vectors

Vector.getAbsolute() Converts the vector components to

absolute values

Vector with absolute coordinates

Vector.getAngle() Calculates the angle between two

vectors

Angle between the two vectors in

radians

Vector.getDistance(left, right) Calculates the distance between two

vectors. Typically used when the

vectors store XYZ spatial coordinates

rather than vectors.

Distance between two points

Vector.getDistance2(left,right) Calculates the square of the distance

between two vectors.

Squared distance between two points.

Vector.lerp(left, right, u) Calculates a point at a percentage of

the distance between the two
coordinates. 'u' specifies the

percentage of the distance to create the

point at.

Point at a percentage of the line

between two points

JavaScript Overview 3-44
CAM Post Processor Guide 8/28/19

Function Description Returns

Vector.product(vector, value) Multiplies each component of the

vector by the value

Vector * value

Vector.sum(left, right) Adds the two vectors Left vector plus right vector

Static Vector Functions

b = a.length(); // b = length of Vector a

c = Vector.getAngle(a, b) // c = angle in radians between vectors a and b

var a = new Vector(1, 2, 1.5);

d = a.getMaximum(); // d = 2

b = Vector.getDistance(point1, point2).normalized; // b = directional vector from point1 to point2

b = Vector.dot(vector1, vector2); // b = cosine of angle between vector1 & vector2

b = a.negated; // b = vector at 180 degrees to Vector a
Sample Vector Expressions

3.3.7 The Matrix Object

The Matrix object is built-in to the post processor and is used to store and work with matrices. Matrices

are normally used when working with multi-axis machines, for 3+2 operations and for adjusting the

coordinates for table rotations. Matrices in the post processor contain only the rotations for each axis

and do not contain translation values.

Certain post processor variables are stored as matrices, such as the workPlane variable, and some

functions require matrices as input. A Matrix object has functions that can be used when creating the

matrix and are not dependent on working with an existing matrix.

Assignment Function Definition

Matrix() Identity matrix (1,0,0, 0,1,0, 0,0,1)

Matrix(i1, j1, k1, i2, j2, k2, i3, j3, k3) Canonical matrix

Matrix(scale) Scale matrix

Matrix(right, up, forward) Matrix using 3 vectors

Matrix(vector, angle) Rotation matrix around the vector

Matrix Assignment Functions

var a = new Matrix(); // creates an identity matrix

var a = new Vector(-1, 0, 0, 0,-1,0, 0,0, 1); // creates a matrix rotated 180 degrees in the XY-plane

var a = new Matrix(.5); // creates a half scale matrix

var a = new Matrix(new Vector(1, 0, 0), 30); // creates an X-rotation matrix of 30 degrees
Sample Matrix Definitions

The following tables describe the attributes and functions contained in the Matrix object. Since an

attribute is simply a value contained in the Matrix object, it does not have an argument.

JavaScript Overview 3-45
CAM Post Processor Guide 8/28/19

Attribute Description

forward Contains the forward vector

n1 Contains he length of the row vectors

of this matrix

n2 Contains the square root of this matrix

vector lengths

Negated Contains the negated matrix

right Contains the right vector

transposed Contains the inverse matrix

up Contains the up vector

Matrix Attributes

You can directly modify an attribute of a matrix, but if you do then the remaining attributes will not be

updated. For example, if you directly store a vector in the forward attribute, the other attributes will not

be updated to reflect this modification. You should use the matrix.setForward(vector) method instead.

If the Returns column in the following table has Implicit, then there is no return value, rather the Matrix

object associated with the function is modified implicitly. For this reason, if you are going to nest a

Matrix function within an expression, do not use the Implicit function, but rather the equivalent function

that returns a matrix.

Function Description Returns

add(matrix) Adds the specified matrix to this
matrix

Implicit

getColumn(column) Retrieves the matrix column as a

vector

Vector containing the specified

column of this matrix

getElement(row, column) Retrieves the matrix element as a

value

Value of this matrix element

getEuler2(convention) Calculates the angles for the

specified Euler convention

Vector containing Euler angles of

this matrix. Refer to the Work Plane

section of the manual for a

description of Euler conventions.

getForward() Returns the forward vector. This will

be 0,0,1 in an identity matrix

Forward vector of this matrix

getN1() Returns the length of the row vectors

of this matrix

Returns right_vector + up_vector +

forward_vector of matrix

getN2() Returns the square root of this matrix

vector lengths

Math.sqrt(n1)

getNegated() Calculates the negated matrix Matrix * -1.

getRight() Returns the right vector. This will be

1,0,0 in an identity matrix

Right vector of matrix

getRow(row) Retrieves the matrix row as a vector Vector containing the specified row

of this matrix

getTiltAndTilt(first, second) Calculates the X & Y rotations

around the fixed frame to match the

forward direction. 'first' and 'second'

can be 0 or 1 and must be different.

Calculated forward direction of this

matrix

getTransposed() Returns the transposed (inverse) of

the matrix

Inversed matrix

getTurnAndTilt(first, second) Calculates the X, Y, Z rotations

around the fixed frame to match the

Calculated forward direction

JavaScript Overview 3-46
CAM Post Processor Guide 8/28/19

Function Description Returns
forward direction. 'first' and 'second'

can be 0, 1, or 2 and must be

different.

getUp() Returns the up vector. This will be

0,1,0 in an identity matrix

Right vector of matrix

isIdentity() Determines if the matrix is an

identity matrix (1,0,0, 0,1,0, 0,0,1).

True if it is an identity matrix

isZero() Determines if the matrix is a null
matrix (0,0,0, 0,0,0, 0,0,0)

True if it is a null matrix

multiply(value) Multiplies each component of the

matrix by the value

Result of matrix times specified

value

multiply(matrix) Multiplies the matrix by the specified

matrix

Results of matrix times specified

matrix

multiply(vector) Multiplies the specified vector by the

matrix

Vector multiplied by the matrix

negate() Calculates the negated matrix Implicit

normalize() Calculates the negated matrix Implicit

setColumn(column, vector) Sets the matrix column as a vector Implicit

setElement(row, column, vector) Sets the matrix element Implicit

setForward(vector) Sets the forward vector Implicit

setRight(vector) Sets the right vector Implicit

setRow(row, vector) Sets the matrix row as a vector Implicit

setUp(vector) Sets the up vector Implicit

subtract(matrix) Subtracts the specified matrix from

this matrix

Implicit

toString() Formats the matrix as a string, e.g.

 "[[1, 0, 0], [0, 1, 0], [0, 0, 1]]"

String representation of matrix

transpose() Creates the transposed/inverse of this

matrix

Implicit

Matrix Functions

Static functions do not require an associated Matrix object.

Function Description Returns

Matrix.diff(left, right) Calculates the difference between

two matrices

Left matrix minus right matrix

Matrix.getAxisRotation(vector, angle) Calculates a rotation matrix Rotation matrix of 'angle' radians

around the axis 'vector'

Matrix.getXRotation(angle) Calculates a rotation matrix around

the X-axis

Rotation matrix of 'angle' radians

around the X-axis

Matrix.getXYZRotation(abc) Calculates the rotation matrix for

the given angles

Rotation matrix that satisfies the

specified XYZ rotations

Matrix.getYRotation(angle) Calculates a rotation matrix around

the Y-axis

Rotation matrix of 'angle' radians

around the Y-axis

Matrix.getZRotation(angle) Calculates a rotation matrix around

the Z-axis

Rotation matrix of 'angle' radians

around the Z-axis

Matrix.sum(left,right) Adds the two matrices Left matrix plus right matrix

Static Matrix Functions

JavaScript Overview 3-47
CAM Post Processor Guide 8/28/19

var abc = m.getEuler2(EULER_ZXZ_R); // abc = ZXZ Euler angles for m

var t = m.getTransposed(); // t = inverse/transposed matrix of m

var fwd = m.getForward(); // fwd = forward (Z) vector of matrix m

var v = new Vector(0, 0, 1);

var q = m.multiply(v); // q = transformation of v though matrix m

var r = Matrix.getZRotation(toDeg(30)); // r = matrix rotated 30 degrees about Z
Sample Matrix Expressions

3.4 Expressions

Variables can be assigned a simple value or text string, or can be more complex in nature containing a

list of variables or literals and operators that perform operations on the values contained in the

expression. The following table lists the common operators supported by JavaScript. and provides

samples using the operators. The operator precedence is also listed (column P), where the operators

with a higher precedence number are performed prior to the operators of a lower precedence number.

Operators with the same precedence number will calculate in the order that they appear in the

expression.

Unary operators only require a single operand instead of two. For example, y = x++ will increment the

variable x after it is assigned to the variable y.

P Operator Operands Description

13 () Expression Overrides the assigned precedence of operators

12 ++ Integer Unary increment

 -- Integer Unary decrement

 ~ Integer Unary bitwise complement

 ! Boolean Unary logical complement (not)

11 * Number Multiplication

 / Number Division

 % Number Remainder

10 + Number, String Addition

 - Number Subtraction

 9 << Integer Bitwise shift left

 >> Integer Bitwise shift right

 8 < Number, String Less than

 <= Number, String Less than or equal to

 > Number, String Greater than

 >= Number, String Greater than or equal to

 7 == Any Equal to

 != Any Not equal to

 === Any Equal to and same variable type

 !== Any Not equal to and same variable type

 6 & Integer Bitwise AND

 5 ^ Integer Bitwise XOR

 4 | Integer Bitwise OR

JavaScript Overview 3-48
CAM Post Processor Guide 8/28/19

P Operator Operands Description

 3 && Boolean Logical AND

 2 || Boolean Logical OR

 1 = Any Assignment

 += Number, String Assignment with addition

 -= Number Assignment with subtraction

 *= Number Assignment with multiplication

 /= Number Assignment with division
Expression Operators

x y Expression Result Expression Result

3 5 z = x + y * 3 18 z = (x + y) * 3 24

 z = ++x z = 4, x = 4 z = x++ z = 3, x = 4

 x += y 8 x *= y 15

 z = y / x 1.667 z = y % x 2.0

"Start" "-End" z = x + y "Start-End" x += y "Start-End"

2 3 z = x & y 2 z = x | y 3

1 "1" z = x == y true x === y false

true false z = x true z = !y true

 z = x || y true z = x && y false
Sample Expressions

3.5 Conditional Statements

Conditional statements are commands or functions that will test the results of an expression and then

process statements based on the outcome of the conditional. Conditionals typically check Boolean type

expressions, but can also be used to test if a value is undefined or a string is blank.

This section describes the conditional statements and functions used when developing a post processor.

Some of the conditionals are supported by JavaScript and others are inherent in the post processor

kernel.

3.5.1 The if Statement

The if statement is the most common method for testing a conditional and executing statements based on

the outcome of the test. It can contain a single body of statements to execute when the expression is

true, a second body of statements to execute when the expression is false, or it can contain multiple

conditionals that are checked in order using the else if construct.

As with all commands that affect a body of code, if statements can be nested inside of other if bodies and

loops.

The syntax of if statements should follow the Autodesk standard of always including the {} brackets

around each body of code, specifying the opening bracket ({) on the conditional line, and the closing

JavaScript Overview 3-49
CAM Post Processor Guide 8/28/19

bracket (}) at the start of the line following the body of code for each section as shown in the following

examples.

if (conditional1) {

 // execute code if conditional1 is true

}

if (conditional1) {

 // execute code if conditional1 is true

} else {

 // execute code if conditional1 is false

}

if (conditional1) {

 // execute code if conditional1 is true

} else if (conditional2) {

 // execute code if conditional1 is false and conditional2 is true

} else {

 // execute code if all conditionals are false

}
If Statement Syntax

if (hasParameter("operation-comment")) {

 comment = getParameter("operation-comment");

}

if (isProbeOperation()) {

 var workOffset = probeOutputWorkOffset ? probeOutputWorkOffset : currentWorkOffset;

 if (workOffset > 99) {

 error(localize("Work offset is out of range."));

 return;

 } else if (workOffset > 6) {

 probeWorkOffsetCode = probe100Format.format(workOffset - 6 + 100);

 } else {

 probeWorkOffsetCode = workOffset + "."; // G54->G59

 }

}
Sample If Statements

3.5.2 The switch Statement

The switch statement is similar to an if statement in that it causes a branch in the flow of a program's

execution based on the outcome of a conditional. switch statements are typically used when checking

the value of a single variable, whereas if conditionals can test complex expressions.

JavaScript Overview 3-50
CAM Post Processor Guide 8/28/19

The syntax of switch bodies will contain a single switch statement with a variable whose value

determines the code to be executed. case statements will be included in the switch body, with each one

containing the value that causes its body of code to be executed. The end of each case body of code

must have a break statement so that the next case body of code is not executed. A default statement can

be defined that contains code that will be executed if the switch variable does not match any of the case

values.

case statements should follow the Autodesk standard of always including specifying the opening bracket

({) on the switch line, and the closing bracket (}) at the start of the line at the end of the body of code for

each section. The case statements will be aligned with the switch statement and all code within each

case body will be indented.

switch (variable) {

case value1:

 // execute if variable = value1

 break;

case value2:

 // execute if variable = value2

case value3:

 // execute if variable = value3

default:

 // execute if variable does not equal value1, value2, or value3

 break;

}

Switch Block Syntax

switch (coolant) {

 case COOLANT_FLOOD:

 m = 8;

 break;

 case COOLANT_THROUGH_TOOL:

 m = 88;

 break;

 case COOLANT_AIR:

 m = 51;

 break;

 default:

 onUnsupportedCoolant(coolant);

 }

}
Sample Switch Blocks

JavaScript Overview 3-51
CAM Post Processor Guide 8/28/19

3.5.3 The Conditional Operator (?)

The ? conditional operator tests an expression and returns different values based on whether the

expression is true or false. It is a compact version of a simple if block and is used in an assignment type

statement or as part of an expression.

var a = conditional ? true_value : false_value;
? Conditional Operator

In the above syntax, a will be assigned true_value if the conditional is true, or false_value if it is false.

homeGcode = properties.useG30 ? 30 : 28;

// could be expanded into this if block

if (properties.useG30) {

 homeGcode = 30;

} else {

 homeGcode = 28;

}
Sample ? Conditional Operator

3.5.4 The typeof Operator

The typeof operator is not a conditional operator per the general terminology, but it is always used as a

part of a conditional to determine if a function or variable exists. When used in an expression it will

return a string that describes the variable type of the operand. This is the only way to test if a function

exists prior to calling the function or if a variable exists before referencing it. If you try to reference a

non-existent variable or function without testing to see if it exists first, the post processor will terminate

with an error.

The typeof operator is followed by a single operand name, i.e. "typeof variable". It can return the

following string values.

Operand Type Return Values

number "number"

string "string"

boolean "boolean"

object, array, null "object"

function "function"

undefined "undefined"
typeof Return Values

if ((typeof getHeaderVersion == "function") && getHeaderVersion()) {

 writeComment(localize("post version") + ": " + getHeaderVersion());

}
Sample typeof Usage

JavaScript Overview 3-52
CAM Post Processor Guide 8/28/19

3.5.5 The conditional Function

The conditional function will test an expression and if it is true will return the specified value. If the

expression is false, then a blank string is returned. The conditional function is mainly used for

determining if a specific code should be output in a block.

conditional(expression, true_value)
conditional Syntax

writeBlock(

 gRetractModal.format(98), gAbsIncModal.format(90), gCycleModal.format(82),

 getCommonCycle(x, y, z, cycle.retract),

 conditional(P > 0, "P" + milliFormat.format(P)), //optional

 feedOutput.format(F)

);
conditional Usage

3.5.6 try / catch

The try/catch block is an exception handling mechanism. This allows the post processor to control the

outcome of an exception. Depending on the exception that is encountered, the JavaScript code could

continue processing or terminate with an error. The try/catch block is used to override the normal

processing of exceptions in JavaScript.

try {

 // code that may generate an exception

} catch (e) { // e is a local variable that contains the exception object or value that was thrown

 // code to perform if an exception is encountered

}
try/catch Syntax

try {

 programId = getAsInt(programName);

} catch(e) {

 error(localize("Program name must be a number."));

 return;

}
try/catch Usage

3.5.7 The validate Function

The validate function tests an expression and raises an exception if the expression is false. The post

processor will typically output an error if an exception is raised, so in essence, the validate function

determines if an expression is true or false and outputs an error using the provided message if it is false.

validate(expression, error_message)
validate Syntax

JavaScript Overview 3-53
CAM Post Processor Guide 8/28/19

validate(retracted, "Cannot cancel length compensation if the machine is not fully retracted.");
Sample validate Code

In the above sample, an error will be generated if retracted is set to false.

3.5.8 Comparing Real Values

Real values are stored as binary numbers and are not truncated as you see them in an output file, so there

are times when the numbers are not equal even if they show as the same value in the output file. For this

reason, it is recommended that you either use a tolerance or truncate them when comparing their values.

The format.getResultingValue function can be used to truncate a number to a fixed number of decimal

places.

var a = 3.141592654;

var b = 3.141593174;

// simple comparison

if (a == b) { // false

// comparison using a tolerance

var toler = .0001;

if (Math.abs(a – b) <= toler) { // true

// comparison using truncated values

var spatialFormat = createFormat({decimals:4});

if ((spatialFormat.getResultingValue(a) - spatialFormat.getResultingValue(b)) == 0) { // true

Comparing Real Values

3.6 Looping Statements

Loops perform repetitive actions. There are various styles of looping statements; for, for/in, while, and

do/while. You should choose the looping statement that lends itself to the style of loop you are coding.

The syntax of looping statements should follow the Autodesk standard of always including the {}

brackets around each body of code, specifying the opening bracket ({) on the looping statement, and the

closing bracket (}) at the start of the line following the body of code for the loop. Loops can be nested

within other bodies of code, like conditionals or other loops.

3.6.1 The for Loop

The for loop is the most common of the looping statements. It includes a counter and an expression on

when to end the loop, so it will loop through the body of the loop a fixed number of times, unless

interrupted by the break command. The counter variable is initialized before the loop starts and is

JavaScript Overview 3-54
CAM Post Processor Guide 8/28/19

tested when the expression is evaluated before each iteration of the loop. The counter variable is

incremented at the end of the loop, just before the expression is evaluated again.

Multiple counters can be initialized and incremented in a for loop by separating the counters with a

comma (,).

for(initialize_counter; test expression ; increment_counter) {

 // body of loop

}
for Loop Syntax

for (var i = 0; i < getNumberOfSections(); ++i) { // loop for the number of sections in intermediate file

 if (getSection(i).workOffset > 0) {

 error(localize("Using multiple work offsets is not possible if the initial work offset is 0."));

 return;

 }

}

for (i = 0, j = ary.length - 1 ; i < ary.length / 2; ++i, --j) { // reverse the order of an array

 var tl = ary[i];

 ary[i] = ary[j];

 ary[j] = tl;

}
Sample for Loops

3.6.2 The for/in Loop

The for/in loop allows you to traverse the properties of an object. It is not commonly used in post

processors (except for the dump.cps post processor), but can be useful for debugging the property names

and values in an object.

for(variable in object) {

 // body of loop

}
for/in Loop Syntax

for(var element in properties) { // write out the property table

 writeln("properties." + element + " = " + properties[element]);

}
Sample for/in Loop

3.6.3 The while Loop

The while loop evaluates an expression and will execute the body of the loop when the expression is true

and will end the loop when the expression is false. Since the expression is tested at the top of the loop,

the body of code in the loop will not be executed when the expression is initially set to false.

JavaScript Overview 3-55
CAM Post Processor Guide 8/28/19

while (expression) {

 // body of loop

}
while Loop Syntax

while (c > 2*Math.PI) {

 c -= 2 * Math.PI;

}
Sample while Loop

3.6.4 The do/while Loop

The do/while loop is pretty much the same as the while loop, but the expression is tested at the end of

the loop rather than at the start of the loop. This means that the loop will be executed at least once, even

if the expression is initially set to false.

do {

 // body of loop

} while (expression)
do/while Loop Syntax

var i = 0;

var found = false;

do {

 if (mtype[i++] == "Start") {

 found = true;

 }

} while (!found && i < mtype.length);
Sample do/while Loop

3.6.5 The break Statement

The break statement is used to interrupt a loop or switch statement prematurely. When the break

statement is encountered during a loop or switch body, then the innermost loop/switch will be ended and

control will move to the first statement outside of the loop/switch.

break is pretty much mandatory with switch statements. For loops, break can be used to get out of the

loop when an error is encountered, or when a defined pattern is found within an array.

for (i = 0; i < mtype.length; ++i) {

 if (mtype[i] == "Start") {

 break; // exits the loop

 }

}

JavaScript Overview 3-56
CAM Post Processor Guide 8/28/19

Sample Usage of break Command

3.6.6 The continue Statement

The continue statement is used to bypass the remainder of the loop body and restarts the loop at the next

iteration.

for (i = 0; i < mtype.length; ++i) {

 if (mtype[i] < 0) {

 continue; // skips this iteration of the loop and continues with the next iteration

 }

 …

}
Sample Usage of break Command

3.7 Functions

Functions in JavaScript behave in the same manner as functions in other high-level programming

languages. In a post processor all code, except for the global settings at the top of the file, is contained

in functions, either entry functions (onOpen, onSection, etc.) or helper functions (writeBlock,

setWorkPlane, etc.). The code in a function will not be processed until that function is called from

within another routine (for the sake of clarity the calling function will be referred to as a 'routine' in this

section). Here are the main reasons for placing code in a separate function rather than programming it in

the upper level routine that calls the function.

1. The same code is executed in different areas of the code, either from the same function or in

multiple functions. Placing the common code in its own function eliminates duplicate code from

the file, making it easier to understand and maintain.

2. To logically separate logic and make it easier to understand. Separating code into its own

function can keep the calling routine from becoming too large and harder to follow, even if the

function is only called one time.

3.7.1 The function Statement

A function consists of the function statement, a list of arguments, the body of the function (JavaScript

code), and optional return statement(s).

function name([arg1 [,arg2 […, argn]]]) {

 …

 code

 …

}
function Statement Syntax

JavaScript Overview 3-57
CAM Post Processor Guide 8/28/19

The argument list is optional and contains identifiers that are passed into the function by the calling

routine. The arguments passed to the function are considered read-only as far as the calling routine is

concerned, meaning that any changes to these variables will be kept local to the called function and not

propagated to the calling routine. You use the return statement to return value(s) to the calling routine.

function writeComment(text) {

 writeln(formatComment(text)); // text is accepted as an argument and passed to formatComment

}
Sample function Definition

Arguments accepted by a function can either be named identifiers as shown in the previous example, or

you can use the arguments array to reference the function arguments. The arguments array is built-in to

JavaScript and is treated as any other Array object, meaning that it has the length property and access to

the Array attributes and functions.

 transferType = parseChoice(properties.transferType,"PHASE","SPEED","STOP");

…

function parseChoice() {

 for (var i = 1; i < arguments.length; ++i) {

 if (String(arguments[0]).toUpperCase() == String(arguments[i]).toUpperCase()) {

 return i - 1;

 }

 }

 return -1;

}
Sample Usage of arguments Array

3.7.2 Calling a function

A function call is treated the same as any other expression. It can be standalone, assign a value, and be

placed anywhere within an expression. The value returned by the called function is treated as any other

variable. You simply type the name of the function with its arguments.

setWorkPlane(abc); // function does not return a value

seqno = formatSequenceNumber(); // function returns a value

circumference = getRadius(circle) * 2.0 * Math.PI; // function used in a regular expression
Sample function Calls

3.7.3 The return Statement

As you can see in the previous sections, a function can be treated the same as any other expression and

all expressions have values. The return statement is used to provide a value back to the calling routine.

You will recall that a function does not have to return a value, in this case you do not have to place a

return statement in the function, the function will automatically return when the end of the function body

Entry Functions 4-58
CAM Post Processor Guide 8/28/19

is reached. You can place a return statement anywhere within the function, the function will be ended

whenever a return statement is reached.

return [expression]
return Statement Syntax

The return value can be any valid variable type; a number, string, object, or array. If you want to return

multiple values from a function, then you must return either an object or an array. You can also

propagate the JavaScript this object which will be automatically returned to the calling routine when the

end of the function is reached or when processing a return statement without an expression. If the this

object is used, then the function will be used to create a new object and you will need to define the

function call as if you were creating any other type of object as shown in the following example.

function writeComment(text) {

 writeln(formatComment(text));

} // implicit return

function parseChoice() {

 for (var i = 1; i < arguments.length; ++i) {

 if (String(arguments[0]).toUpperCase() == String(arguments[i]).toUpperCase()) {

 return i - 1; // return the matching choice

 }

 }

 return -1; // return choice not found

}

function FeedContext(id, description, feed) {

 this.id = id;

 this.description = description;

 this.feed = feed;

} // return this object {id, description, feed}

var feedContext = new FeedContext(id, "Cutting", feedCutting); // create new FeedContext object
Sample return Usage

4 Entry Functions
The post processor Entry functions are the interface between the kernel and the post processor. An

Entry function will be called for each record in the intermediate file. Which Entry function is called is

determined by the intermediate file record type. All Entry functions have the 'on' prefix, so it is

recommended that you do not use this prefix with any functions that you add to the post processor.

Here is a list of the supported Entry functions and when they are called. The following sections in this

Chapter provide more detailed documentation for the most common of the Entry functions.

Entry Functions 4-59
CAM Post Processor Guide 8/28/19

Entry Function Invoked When …

onCircular(clockwise, cx, cy, cz, x, y, z, feed) Circular move

onClose() End of post processing

onCommand(value) Manual NC command not handled in its own

function

onComment(string) Comment Manual NC command

onCycle() Start of a cycle

onCycleEnd() End of a cycle

onCyclePoint(x, y, z) Each cycle point

onDwell(value) Dwell Manual NC command

onLinear(x, y, z, feed) 3-axis cutting move

onLinear5D(x, y, z, a, b, c, feed) 5-axis cutting move

onMachine() Machine configuration changes

onMovement(value) Movement type changes

onOpen() Post processor initialization

onOrientateSpindle(value) Spindle orientation is requested

onParameter(string, value) Each parameter setting

onPassThrough(string) Pass through Manual NC command

onPower(boolean) Power mode for water/plasma/laser changes

onRadiusCompensation() Radius compensation mode changes

onRapid(x, y, z) 3-axis Rapid move

onRapid5D(x, y, z, a, b, c) 5-axis Rapid move

onRewindMachine(a, b, c) Rotary axes limits are exceeded

onSection() Start of an operation

onSectionEnd() End of an operation

onSectionEndSpecialCycle() End of a special cycle operation

onSectionSpecialCycle() Start of a special cycle operation (Stock Transfer)

onSpindleSpeed(value) Spindle speed changes

onTerminate() Post processing has completed, output files are closed

onToolCompensation(value) Tool compensation mode changes

Entry Functions

4.1 Global Section

The global section is not an Entry function, but rather is called when the post processor is first

initialized. It defines settings used by the post processor kernel, the property table displayed with the

post processor dialog inside of HSM, definitions for formatting output codes, and global variables used

by the post processor.

Entry Functions 4-60
CAM Post Processor Guide 8/28/19

While the global section is typically located at the top of the post processor, any variables defined

outside of a function are in the global section and accessible by all functions, even the functions defined

before the variable. You may notice global variables being defined in the middle of the post processor

code just before a function. This allows for a group of functions to be easily cut-and-pasted from one

post to another post, including the required global variables.

4.1.1 Kernel Settings

Some of the variables defined in the global section are actually defined in and used by the post engine.

These variables are usually at the very top of the file and are easily discerned, since they are not

preceded by var. The following table provides a description of the kernel settings that you will find in

most post processors.

Setting Description

allowedCircularPlanes Defines the allowed circular planes. This setting is described in the

onCircular section.

allowHelicalMoves Specifies whether helical moves are allowed. This setting is described in

the onCircular section.

allowSpiralMoves Specifies whether spiral moves are allowed. This setting is described in

the onCircular section.

capabilities Defines the capabilities of the post processor. The capabilities can be

CAPABILITY_MILLING, CAPABILITY_TURNING,

CAPABILITY_JET, CAPABILITY_SETUP_SHEET, and

CAPABILITY_INTERMEDIATE. Multiple capabilities can be enabled

by using the logical OR operator.

capabilities = CAPABILITY_MILLING | CAPABILITY_TURNING;

certificationLevel Certification level of the post configuration used to determine if the post

processor is certified to run against the post engine. This value rarely

changes.

description Short description of post processor. This will be displayed along with the

post processor name in the Post Process dialog in HSM when selecting a

post processor to run.

extension The output NC file extension.

highFeedMapping Specifies the high feed mapping mode for rapid moves. Valid modes are

HIGH_FEED_NO_MAPPING, HIGH_FEED_MAP_MULTI,

HIGH_FEED_MAP_XY_Z, and HIGH_FEED_MAP_ANY. This setting

can be changed dynamically in the Property table when running the post

processor.

highFeedrate Specifies the feedrate to use when mapping rapid moves to linear moves.

legal Legal notice of company that authored the post processor

mapToWCS Specifies whether the work plane is mapped to the model origin and work

plane. When disabled the post is responsible for handling mapping from

the model origin to the setup origin. This variable must be defined using

the following syntax and can only be defined in the global section. Any

Entry Functions 4-61
CAM Post Processor Guide 8/28/19

Setting Description

deviation from this format, including adding extra spaces, will cause this

command to be ignored.

mapToWCS = true;

mapToWCS = false;

mapWorkOrigin Specifies whether the coordinates are mapped to the work plane origin.

When disabled the post is responsible for handling the work plane origin.

This variable must be defined using the following syntax and can only be

defined in the global section. Any deviation from this format, including

adding extra spaces, will cause this command to be ignored.

mapWorkOrigin = true;

mapWorkOrigin = false;

maximumCircularRadius Specifies the maximum radius of circular moves that can be output as

circular interpolation and can be changed dynamically in the Property

table when running the post processor. This setting is described in the

onCircular section.

maximumCircularSweep Specifies the maximum circular sweep of circular moves that can be

output as circular interpolation. This setting is described in the onCircular

section.

minimumChordLength Specifies the minimum delta movement allowed for circular interpolation

and can be changed dynamically in the Property table when running the

post processor. This setting is described in the onCircular section.

minimumCircularRadius Specifies the minimum radius of circular moves that can be output as

circular interpolation and can be changed dynamically in the Property

table when running the post processor. This setting is described in the

onCircular section.

minimumCircularSweep Specifies the minimum circular sweep of circular moves that can be output

as circular interpolation. This setting is described in the onCircular

section.

minimumRevision The minimum revision of the post kernel that is supported by the post

processor. This value will remain the same unless the post processor takes

advantage of functionality added to a later version of the post engine that

is not available in earlier versions.

programNameIsInteger Specifies whether the program name must be an integer (true) or can be a

text string (false).

tolerance Specifies the tolerance used to linearize circular moves that are expanded

into a series of linear moves. This setting is described in the onCircular

section.

unit Contains the output units of the post processor. This is usually the same as

the input units, either MM or IN, but can be changed in the onOpen

function of the post processor by setting it to the desired units.

vendor Name of the machine tool manufacturer.

vendorUrl URL of the machine tool manufacturer's web site.
Post Kernel Settings

Entry Functions 4-62
CAM Post Processor Guide 8/28/19

description = "RS-274D";

vendor = "Autodesk";

vendorUrl = "http://www.autodesk.com";

legal = "Copyright (C) 2012-2017 by Autodesk, Inc.";

certificationLevel = 2;

minimumRevision = 24000;

longDescription = "Generic post for the RS-274D format. Most CNCs will use a format very similar

to RS-274D. When making a post for a new CNC control this post will often serve as the basis.";

extension = "nc";

setCodePage("ascii");

capabilities = CAPABILITY_MILLING;

tolerance = spatial(0.002, MM);

minimumChordLength = spatial(0.01, MM);

minimumCircularRadius = spatial(0.01, MM);

maximumCircularRadius = spatial(1000, MM);

minimumCircularSweep = toRad(0.01);

maximumCircularSweep = toRad(180);

allowHelicalMoves = true;

allowedCircularPlanes = undefined; // allow any circular motion
Sample Post Kernel Settings Code

4.1.2 Property Table

Stock post processors are designed to run the machine without any modifications, but may not create the

output exactly as you would like to see it. The Property Table contains settings that can be changed at

runtime so that the stock post can remain generic in nature, but still be easily customized by various

users. The settings in the Property Table will typically be used to control small variations in the output

created by the post processor, with major changes handled by settings in the Fixed Settings section.

When you Post Process from HSM you will be presented with a dialog that allows you to select the post

processor to execute, the output file path, and other settings. The Property Table will also be displayed

in the dialog allowing you to override settings within the post processor each time it is run.

Entry Functions 4-63
CAM Post Processor Guide 8/28/19

Property Table in Post Process Dialog

The Property Table is defined in the post processor so you have full control over the information

displayed in it, with the exception of the Built-in properties, which are displayed with every post

processor and define the post kernel variables described previously. The properties object defined in the

post processor defines the property names as they are used in the post processor along with the default

values assigned to each property.

// user-defined properties

properties = {

 writeMachine: true, // write machine

 writeTools: true, // writes the tools

 preloadTool: true, // preloads next tool on tool change if any

 showSequenceNumbers: true, // show sequence numbers

 sequenceNumberStart: 10, // first sequence number

 sequenceNumberIncrement: 5, // increment for sequence numbers

 optionalStop: true, // optional stop

 separateWordsWithSpace: true // specifies that the words should be separated with a white space

 rotaryTableAxis: "none" // none, X, Y, Z, -X, -Y, -Z

};
Property Table Definition

The default values for the variables can be a number, boolean, or a text string.

The propertyDefinitions object gives you control on how you want the properties displayed to the user in

the Property Table. There should be a matching entry in the propertyDefinitions object for every entry

in the properties object. If there is not a matching entry, then the variable name from the properties

object will be displayed and this property will not have tool tip text associated with it.

// user-defined property definitions

Entry Functions 4-64
CAM Post Processor Guide 8/28/19

propertyDefinitions = {

 writeMachine: {title:"Write machine",

 description:"Output the machine settings in the header of the code.", group:0, type:"boolean"},

 writeTools: {title:"Write tool list", description:"Output a tool list in the header of the code.",

 group:0, type:"boolean"},

 preloadTool: {title:"Preload tool",

 description:"Preloads the next tool at a tool change (if any).",

 type:"boolean"},

 showSequenceNumbers: {title:"Use sequence numbers",

 description:"Use sequence numbers for each block of outputted code.", group:1, type:"boolean"},

 sequenceNumberStart: {title:"Start sequence number", description:"Sequence number start value",

 group:1, type:"integer"},

 sequenceNumberIncrement: {title:"Sequence number increment",

 description:"The amount by which the sequence number is incremented by in each block.",

 group:1, type:"integer"},

 optionalStop: {title:"Optional stop",

 description:"Outputs optional stop code during when necessary in the code.",

 type:"boolean"},

 separateWordsWithSpace: {title:"Separate words with space",

 description:"Adds spaces between words if 'yes' is selected.",

 type:"boolean"},

 rotaryTableAxis: {

 title: "Rotary table axis",

 description: "Selects the rotary table axis orientation.",

 type: "enum",

 values:[

 {title:"No rotary", id:"none"},

 {title:"Along +X", id:"x"},

 {title:"Along +Y", id:"y"},

 {title:"Along +Z", id:"z"},

 {title:"Along -X", id:"-x"},

 {title:"Along -Y", id:"-y"},

 {title:"Along -Z", id:"-z"}

]

 }

};
Property Table User Interface Definition

The following table describes the supported variable properties in the propertyDefinitions object. It is

important that the format of the propertyDefinitions object follows the above example, where the name

of the variable is first, followed by a colon (:), and the properties enclosed in braces ({}). The values

property is an array and its properties must be enclosed in brackets ([]).

Property Description

title Description of the variable displayed in the User Interface within the Property

column.

Entry Functions 4-65
CAM Post Processor Guide 8/28/19

Property Description

description A description of the variable displayed as the tool tip when the mouse is

positioned over this variable.

group The group number that this variable belongs to. All variables with the same

group number will be displayed together in the User Interface. (This property

is not supported as of this writing)

type Defines the input type. The input types are described in the following table.

values Contains a list (array) of choices for the enum or integer input type. It is not

valid with any other input type.
Property Table User Interface Definition

Input Type Description

"integer" Integer value

"number" Real value

"spatial" Real value

"angle" Angular value in degrees

"boolean" true or false

"string" Text string

"enum" The enum input type defines this variable as having fixed choices associated

with it. These choices are defined individually in the values property array.

An enum input type should be defined using string values.
Property Table Input Types

Values Property Description

title The text of the choice item displayed in the User Interface for this variable.

id The value that will be returned in the variable when the post processor is

called. All references to this property, e.g. properties.rotaryTableAxis, in the

post processor should expect only one of these id values as its value. The id

must be a text string when associated with an enum input type or an integer

value when associated with an integer.
Enum Choices Properties

Property Table with Titles and Tool Tips

Entry Functions 4-66
CAM Post Processor Guide 8/28/19

4.1.3 Format Definitions

The format definitions area of the global section is used to define the formatting of codes output to the

NC file. It consists of the format definitions (createFormat) as well as definitions that determine when

the codes will be output or suppressed (createModal, createVariable, createReferenceVariable,

createIncrementalVariable).

The createFormat command defines how codes are formatted before being output to the NC file. It can

be used to create a complete format for an output code, including the letter prefix, or to create a primary

format that is referenced with the output definitions. It has the following syntax.

createFormat({specifier:value, specifier:value, …});
createFormat Syntax

The specifiers must be enclosed in braces ({}) and contain the specifier name followed by a colon (:)

and then by a value. Multiple specifiers are separated by commas.

Specifier Value

prefix Defines the prefix of the output value as a text string. The prefix should

only be defined if this is a standalone format and is not used for multiple

output definitions.

suffix Defines the suffix of the output value as a text string. The suffix should

only be defined if this is a standalone format and is not used for multiple

output definitions.

decimals Defines the number digits to the right of the decimal point to output. The

default is 6.

forceDecimal When set to true the decimal point will always be included with the

formatted number. false will remove the decimal point for integer values.

forceSign When set to true will force the output of a plus (+) sign on positive

numbers. The default is false.

width Specifies the minimum width of the output string. If the formatted value's

width is less than the width value, then the start of the number will either be

filled with spaces or zeros depending on the value of zeropad. If the format

is used to output a code to the NC file be sure to set zeropad to true,

otherwise the prefix and value could be separated by spaces. The width of

the output string includes the decimal point when it is included in the

number, but not the sign of the number. The default is 0.

zeropad When set to true will fill the beginning of the output string with zeros to

match the specified width. If width is not specified or the output string is

longer than width, then no zeros will be added. The default is false.

trim When set to true the trailing zeros will be trimmed from the right of the

decimal point. The default is true.

trimLeadZero When set to true will trim the lead zero from a floating-point number if the

number is fractional, e.g. .123 instead of 0.123. The default is false.

Entry Functions 4-67
CAM Post Processor Guide 8/28/19

Specifier Value

scale Defines a scale factor to multiply the value by prior to formatting it for

output. scale can be a number or a number designator, such as DEG. The

default is 1.

offset Defines a number to add to the value prior to formatting it for output. The

default is 0.

separator Defines the character to use as the decimal point. The default is '.'.

inherit Inherits all properties from an existing format.
createFormat Properties

Once a format is created, it can be used to create a formatted text string of a value that matches the

properties in the defined format. The following table describes the functions defined in the format

object.

Function Description

areDifferent(a, b) Returns true if the input values are different after being formatted.

format(value) Returns the formatted text string representation of the number.

getError(value) Returns the inverse of the remaining portion of the value that is not

formatted for the number. For example, if the formatted value of 4.5005 is

"4.500", then the value returned from getError will be -0.0005.

getMinimumValue() Returns the minimum value that can be formatted using this format, for

example, 1 for decimals:0, .1 for decimals:1, etc.

getResultingValue

(value)

Returns the real value that the formatted output text string represents.

isSignificant(value) Returns true if the value will be non-zero when formatted.
format Functions

var xFormat = createFormat({decimals:3, trim:false, forceSign:true});

xFormat.format(4.5); // returns "+4.500"

xFormat.areDifferent(9.123, 9.1234); // returns false, both numbers are 9.123

xFormat.getMinimumValue(); // returns 0.001

xFormat.isSignificant(.0005); // returns true (rounded to .001)

xFormat.isSignificant(.00049); // returns false

var yFormat = createFormat({decimals:3, forceSign:true});

yFormat.format(4.5); // returns "+4.5"

yFormat.getResultingValue(3.1234); // returns 3.123

var toolFormat = createFormat({prefix:"T", decimals:0, zeropad:true, width:2});

toolFormat.format(7); // returns "T07"

var aFormat = createFormat({decimals:3, forceSign:true, forceDecimal:true, scale:DEG});

aFormat.format(Math.PI); // returns "+180."

var zFormat = createFormat({decimals:4, scale:10000, forceDecimal:false});

zFormat.format(1.23); // returns 12300 (leading zero suppression)

mk:@MSITStore:C:/Users/Public/Documents/Autodesk/Inventor%20HSM/Posts/post.chm::/classMath.html

Entry Functions 4-68
CAM Post Processor Guide 8/28/19

Example format Commands

4.1.4 Output Variable Definitions

The format object is used to format values, but has no connection to the output of the variable, except

for formatting a text string that could be output. It does not know what the last output variable is, which

is important when you do not want to output a code if the value has not changed from its previous output

value.

The createVariable, createModal, createReferenceVariable, and createIncrementalVariable functions

create output objects that are used to control the output of a code. The createVariable and createModal

objects are used to output codes/registers only when they change from the previous output value, the

createReferenceVariable is used to output values when they are different from a specified reference

value, and the createIncrementalVariable is used for the output of incremental values, i.e. the output

value will be an incremental value based on the previous value and the input value.

The createVariable and createModal objects can be used interchangeably since they both output only

the values that have changed. In a post processor you will see that the createModal object is used for

the output of G-code or M-code modal groups, where multiple codes can be output in a single block and

will only be output when the code changes value from the previous code in this group. The

createVariable object is used for all other code/register output such as the axes registers, spindle speed,

feedrates, etc. The only difference in these objects the functions that belong to them, for example you

can disable the output of a Variable, but not of a Modal.

You can use the createFormat object for codes/registers that should be output whenever they are

encountered in the post, just be sure to add the prefix to the definition.

createVariable({specifier:value, specifier:value, …}, format);

createModal({specifier:value, specifier:value, …}, format);

createReferenceVariable({specifier:value, specifier:value, …}, format);

createIncrementalVariable({specifier:value, specifier:value, …}, format);
Output Variables Syntax

The specifiers must be enclosed in braces ({}) and contain the specifier name followed by a colon (:)

and then by a value. Multiple specifiers are separated by commas. A format object is provided as the

second parameter. Some of the specifiers are common to all three objects and some to a particular

object, as listed in the following table.

Specifier Object Value

prefix (all) Text string that overrides the prefix defined in format.

force (all) When set to true forces the formatting of the value even if it

does not change from the previous value. The default is

false.

onchange createVariable

createModal

Defines the method to be invoked when the formatting of

the value results in output.

Entry Functions 4-69
CAM Post Processor Guide 8/28/19

Specifier Object Value

suffix createModal Text string that overrides the suffix defined in format.

first createIncrementalVariable Defines the initial value of an incremental variable. You

will also have to call the variable.format(first) function

after creating the IncrementalVariable to properly store the

initial value.
Output Variable Properties

The onchange property typically defines a function that is called whenever the formatting of the variable

results in an output text string, such as when the value changes or is forced out. The following example

will force out the gMotionModal code whenever the plane code is changed.

var gPlaneModal = createModal({onchange:function () {gMotionModal.reset();}}, gFormat);
onChange Usage

Once an output variable is created, it can be used to create a formatted text string for output. The

following table describes the functions assigned to the output variable objects. The functions are

properties of the defined variable object.

Function Object Description

disable() Variable

ReferenceVariable

IncrementalVariable

Disables this variable from being

output. Will cause the return value

from the format function to always be a

blank string ("").

enable() Variable

Reference Variable

IncrementalVariable

Enables this variable for output. This is

the default condition when the variable

is created.

format(value [,ref]) (all) Returns the formatted text string

representation of the number. Can

return a blank string if the value is the

same as the stored value in the Variable

and Modal objects, the same as the

reference value in the

ReferenceVariable object, or generates

a value of 0 in the IncrementalVariable

object. The call to format for a

ReferenceVariable object must contain

the second ref parameter, which

determines if the value should be

formatted for output.

getCurrent() Variable

Modal

IncrementalVariable

Returns the value currently stored in

this variable.

isEnabled() Variable

ReferenceVariable

IncrementalVariable

Returns true if this variable is enabled

for output

Entry Functions 4-70
CAM Post Processor Guide 8/28/19

Function Object Description

reset() Variable

Modal

IncrementalVariable

Forces the output of the formatted text

string on the next call to format,

overriding the rules for not outputting a

value.

setPrefix(prefix-text) (all) Overrides the prefix of the variable.

setSuffix(suffix-text) Modal Overrides the suffix of the variable.
Variable Functions

var xyzFormat = createFormat({decimals:3, forceDecimal:true});

var xOutput = createVariable({prefix:"X"}, xyzFormat);

xOutput.format(4.5); // returns "X4.5"

xOutput.format(4.5); // returns "" (4.5 is currently stored in the xOutput variable)

xOutput.reset(); // force xOuput on next formatting

xOutput.format(4.5); // returns "X4.5"

xOutput.disable(); // disable xOutput formatting

xOutput.format(1.2); // returns "" since it is disabled

var gFormat = createFormat({prefix:"G", decimals:0, width:2, zeropad:true});

var gMotionModal = createModal({force:true}, gFormat);

gMotionModal.format(0); // returns G00

gMotionModal.format(0); // returns G00 (force is set to 'true')

gMotionModal.format.setPrefix("G1=");

gMotionModal.setSuffix("*");

gMotionModal.format(1); // returns "G1=01*"

var iOutput = createReferenceVariable({prefix:"I", forceDecimal}, xyzFormat);

iOutput.format(.001, 0); // returns "I0.001"

iOutput.format(.0001, 0); // returns ""

var zOutput = createIncrementalVariable({prefix:"Z", first:.5}, xyzFormat);

zOutput.format(.5); // after creating the IncrementalVariable you must call the format function

 // with the same value as 'first' to properly set the initial value

zOutput.format(1.2); // returns "Z0.7"

zOutput.format(1.5); // returns "Z0.3"

zOutput.format(1.5); // returns ""

zOutput.format(0); // returns "Z-1.5"
Example Variable Commands

4.1.5 Fixed Settings

The fixed settings area of the global section defines settings in the post processor that enable features

that may change from machine to machine, but are not common enough to place in the Property Table.

These settings are usually not modified by the post processor, but can be modified to enable features on

your machine that are disabled in a stock post processor or vice versa.

Entry Functions 4-71
CAM Post Processor Guide 8/28/19

// fixed settings

var firstFeedParameter = 500;

var useMultiAxisFeatures = false;

var forceMultiAxisIndexing = false; // force multi-axis indexing for 3D programs

var maximumLineLength = 80; // the maximum number of characters allowed in a line

var minimumCyclePoints = 5; // min number of points in cycle operation to consider for subprogram

var WARNING_WORK_OFFSET = 0;

var ANGLE_PROBE_NOT_SUPPORTED = 0;

var ANGLE_PROBE_USE_ROTATION = 1;

var ANGLE_PROBE_USE_CAXIS = 2;
Sample Fixed Settings Code

4.1.6 Collected State

The collected state area of the global section contains global variables that will be changed during the

execution of the post processor and are either referenced in multiple functions or need to maintain their

values between calls to the same function.

// collected state

var sequenceNumber;

var currentWorkOffset;
Sample Collected State Code

4.2 onOpen

function onOpen() {

The onOpen function is called at start of each CAM operation and can be used to define settings used in

the post processor and output the startup blocks.

1. Define settings based on properties

2. Define the multi-axis machine configuration

3. Output program name and header

4. Perform checks for duplicate tool numbers and work offsets

5. Output initial startup codes

4.2.1 Define Settings Based on Post Properties

The fixed settings section at the top of the post processor contain settings that are fixed and will not be

changed during the processing of the intermediate file. Settings and variables that are dependant on the

properties defined in the Property Table are defined in the onOpen function, since this is the function

called when the post processor first starts.

Entry Functions 4-72
CAM Post Processor Guide 8/28/19

Some of the variables that may be defined here are the maximum circular sweep, starting sequence

number, formats, properties that can be changed using a Manual NC command, etc.

 if (properties.useRadius) {

 maximumCircularSweep = toRad(90); // avoid potential center calculation errors for CNC

 }

 // define sequence number output

 if (properties.sequenceNumberOperation) {

 properties.showSequenceNumbers = false;

 }

 sequenceNumber = properties.sequenceNumberStart;

 // separate codes with a space in output block

 if (!properties.separateWordsWithSpace) {

 setWordSeparator("");

 }

 // Manual NC command can change the transfer type

 transferType = parseToggle(properties.transferType, "PHASE", "SPEED");
Defining Dynamic Variables in the onOpen Function

The majority of machines on the market today accept input in both inches and millimeters. It is possible

that your machine must be programmed in only one unit. If this is the case, then you can define the unit

variable in the onOpen function to force the output of all relevant information in inches or millimeters.

 unit = MM; // set output units to millimeters, use IN for inches
Support for Only One Input Unit

4.2.2 Define the Multi-Axis Configuration

The multi-axis machine configuration is defined in the onOpen function. Following is an example of

this code. For a complete description of defining a multi-axis configuration please see the Create the

Rotary Axes Formats section.

if (true) {

 var aAxis = createAxis({coordinate:0, table:true, axis:[1, 0, 0], range:[-35, 110], preference:1});

 var cAxis = createAxis({coordinate:2, table:true, axis:[0, 0, 1], cyclic:true, preference:0});

 machineConfiguration = new MachineConfiguration(aAxis, cAxis);

 setMachineConfiguration(machineConfiguration);

 optimizeMachineAngles2(1); // map tip mode

 }

 if (!machineConfiguration.isMachineCoordinate(0)) {

 aOutput.disable();

 }

Entry Functions 4-73
CAM Post Processor Guide 8/28/19

 if (!machineConfiguration.isMachineCoordinate(1)) {

 bOutput.disable();

 }

 if (!machineConfiguration.isMachineCoordinate(2)) {

 cOutput.disable();

 }
Defining the Machine Configuration

4.2.3 Output Program Name and Header

The program name and program comment are defined in the Post Process tab of the CAM setup in

HSM. The programNameIsInteger variable defined at the top of the program determines if the program

name needs to be a number or can be a text string.

Defining the Program Name and Comment

writeln("%"); // output start of NC file

if (programName) {

 var programId;

 try {

 programId = getAsInt(programName);

 } catch(e) {

 error(localize("Program name must be a number."));

 return;

 }

 if (!((programId >= 1) && (programId <= 99999))) {

 error(localize("Program number is out of range."));

 return;

 }

 writeln(

 "O" + oFormat.format(programId) +

 conditional(programComment, " " + formatComment(programComment.substr(0,

 maximumLineLength - 2 - ("O" + oFormat.format(programId)).length - 1)))

Entry Functions 4-74
CAM Post Processor Guide 8/28/19

);

 lastSubprogram = programId;

 } else {

 error(localize("Program name has not been specified."));

 return;

 }
Output the Program Name as an Integer and Program Comment

Some machines don't use a program number and accept the program name as a comment.

 writeln("%"); // output start of NC file

 if (programName) {

 writeComment(programName);

 }

 if (programComment) {

 writeComment(programComment);

 }
Output the Program Name as a Comment

The program header can consist of the output filename, version numbers, the run date and time, the

description of the machine, and the list of tools used in the program.

 // Output current run information

 if (hasParameter("generated-by") && getParameter("generated-by")) {

 writeComment(" " + localize("CAM") + ": " + getParameter("generated-by"));

 }

 if (hasParameter("document-path") && getParameter("document-path")) {

 writeComment(" " + localize("Document") + ": " + getParameter("document-path"));

 }

 var eos = longDescription.indexOf(".");

 writeComment(localize(" Post Processor: ") + ((eos == -1) ?

 longDescription : longDescription.substr(0, eos + 1)));

 if ((typeof getHeaderVersion == "function") && getHeaderVersion()) {

 writeComment(" " + localize("Post version") + ": " + getHeaderVersion());

 }

 if ((typeof getHeaderDate == "function") && getHeaderDate()) {

 writeComment(" " + localize("Post modified") + ": " + getHeaderDate());

 }

 var d = new Date(); // output current date and time

 writeComment(" " + localize("Date") + ": " + d.toLocaleDateString() + " " +

 d.toLocaleTimeString());
Output the Description of the Current Run

 // dump machine configuration

 var vendor = machineConfiguration.getVendor();

 var model = machineConfiguration.getModel();

Entry Functions 4-75
CAM Post Processor Guide 8/28/19

 var description = machineConfiguration.getDescription();

 if (properties.writeMachine && (vendor || model || description)) {

 writeComment(localize("Machine"));

 if (vendor) {

 writeComment(" " + localize("vendor") + ": " + vendor);

 }

 if (model) {

 writeComment(" " + localize("model") + ": " + model);

 }

 if (description) {

 writeComment(" " + localize("description") + ": " + description);

 }

 }
Output Machine Information

In the above code sample, the machine information is retrieved from the machineConfiguration, but a

machine configuration file is not always available to the post processor, so it is possible to hard code the

machine description.

 machineConfiguration.setVendor("Doosan");

 machineConfiguration.setModel("Lynx");

 machineConfiguration.setDescription(description);
Defining the Machine Information

// dump tool information

 if (properties.writeTools) {

 var zRanges = {};

 if (is3D()) {

 var numberOfSections = getNumberOfSections();

 for (var i = 0; i < numberOfSections; ++i) {

 var section = getSection(i);

 var zRange = section.getGlobalZRange();

 var tool = section.getTool();

 if (zRanges[tool.number]) {

 zRanges[tool.number].expandToRange(zRange);

 } else {

 zRanges[tool.number] = zRange;

 }

 }

 }

 var tools = getToolTable();

 if (tools.getNumberOfTools() > 0) {

 for (var i = 0; i < tools.getNumberOfTools(); ++i) {

 var tool = tools.getTool(i);

Entry Functions 4-76
CAM Post Processor Guide 8/28/19

 var comment = "T" + toolFormat.format(tool.number) + " " +

 "D=" + xyzFormat.format(tool.diameter) + " " +

 localize("CR") + "=" + xyzFormat.format(tool.cornerRadius);

 if ((tool.taperAngle > 0) && (tool.taperAngle < Math.PI)) {

 comment += " " + localize("TAPER") + "=" + taperFormat.format(tool.taperAngle) +

 localize("deg");

 }

 if (zRanges[tool.number]) {

 comment += " - " + localize("ZMIN") + "=" +

 xyzFormat.format(zRanges[tool.number].getMinimum());

 }

 comment += " - " + getToolTypeName(tool.type);

 writeComment(comment);

 }

 }

 }
Output List of Tools Used

4.2.4 Performing General Checks

Basic checks for using duplicate tool numbers, undefined work offsets, and other requirements can be

done in the onOpen function since all operations can be accessed at any time during post processing.

 if (false) { // set to true to check for duplicate tool numbers w/different cutter geometry

 // check for duplicate tool number

 for (var i = 0; i < getNumberOfSections(); ++i) {

 var sectioni = getSection(i);

 var tooli = sectioni.getTool();

 for (var j = i + 1; j < getNumberOfSections(); ++j) {

 var sectionj = getSection(j);

 var toolj = sectionj.getTool();

 if (tooli.number == toolj.number) {

 if (xyzFormat.areDifferent(tooli.diameter, toolj.diameter) ||

 xyzFormat.areDifferent(tooli.cornerRadius, toolj.cornerRadius) ||

 abcFormat.areDifferent(tooli.taperAngle, toolj.taperAngle) ||

 (tooli.numberOfFlutes != toolj.numberOfFlutes)) {

 error(

 subst(

 localize("Using the same tool number for different cutter geometry for operation '%1' and

'%2'."),

 sectioni.hasParameter("operation-comment") ?

 sectioni.getParameter("operation-comment") : ("#" + (i + 1)),

 sectionj.hasParameter("operation-comment") ?

 sectionj.getParameter("operation-comment") : ("#" + (j + 1))

)

);

Entry Functions 4-77
CAM Post Processor Guide 8/28/19

 return;

 }

 }

 }

 }

 }
Check for Duplicate Tool Numbers using Different Cutter Geometry

 // don't allow WCS 0 unless it is the only WCS used in the program

 if ((getNumberOfSections() > 0) && (getSection(0).workOffset == 0)) {

 for (var i = 0; i < getNumberOfSections(); ++i) {

 if (getSection(i).workOffset > 0) {

 error(localize("Using multiple work offsets is not possible if the initial work offset is 0."));

 return;

 }

 }

 }
Check for Work Offset 0 when Multiple Work Offsets are Used in Program

4.2.5 Output Initial Startup Codes

Codes that set the machine to its default condition are usually output at the beginning of the NC file.

These codes could include the units setting, absolute mode, the feedrate mode, etc.

 // output default codes

 writeBlock(gAbsIncModal.format(90), gFeedModeModal.format(94), gPlaneModal.format(17),

 gFormat.format(49), gFormat.format(40), gFormat.format(80));

 // output units code

 switch (unit) {

 case IN:

 writeBlock(gUnitModal.format(20));

 break;

 case MM:

 writeBlock(gUnitModal.format(21));

 break;

 }
Output Initial Startup Codes

4.3 onSection

function onSection() {

The onSection function is called at start of each CAM operation and controls the output of the following

blocks.

Entry Functions 4-78
CAM Post Processor Guide 8/28/19

1. End of previous section

2. Operation comments and notes

3. Tool change

4. Work plane

5. Initial position

onSection is Called for Each Operation

The first part of onSection determines if there is a change in the tool being used and if the Work

Coordinate System offset or Work Plane is different from the previous section. These settings determine

the output required between operations.

 var insertToolCall = isFirstSection() ||

 currentSection.getForceToolChange && currentSection.getForceToolChange() ||

 (tool.number != getPreviousSection().getTool().number);

 var retracted = false; // specifies that the tool has been retracted to the safe plane

 var newWorkOffset = isFirstSection() ||

 (getPreviousSection().workOffset != currentSection.workOffset); // work offset changes

 var newWorkPlane = isFirstSection() ||

 !isSameDirection(getPreviousSection().getGlobalFinalToolAxis(),

currentSection.getGlobalInitialToolAxis());
 Tool Change, Work Coordinate Sysetm Offset, and Work Plane Settings

4.3.1 Ending the Previous Operation

You would expect that the NC blocks output at the end of an operation to be output in the onSectionEnd

function, but in most posts, this is handled in onSection and for the final operation, in the onClose

function. This code will typically stop the spindle, turn off the coolant, and retract the tool.

Entry Functions 4-79
CAM Post Processor Guide 8/28/19

 if (insertToolCall || newWorkOffset || newWorkPlane) {

 // stop spindle before retract during tool change

 if (insertToolCall && !isFirstSection()) {

 onCommand(COMMAND_STOP_SPINDLE);

 }

 // retract to safe plane

 retracted = true;

 writeRetract(Z);

 }

…

…

 onCommand(COMMAND_COOLANT_OFF);

 if (!isFirstSection() && properties.optionalStop) {

 onCommand(COMMAND_OPTIONAL_STOP);

 }
Ending the Previous Operation

The code to retract the tool can vary from post to post, depending on the controller model and the

machine configuration. It can output an absolute move to the machine home position, for example using

G53, or move to a clearance plane relevant to the current work offset, for example G00 Z5.0.

The onSectionEnd section has an example of ending the operation when not done in the onSection

function.

4.3.2 Operation Comments and Notes

The operation comment is output in the onSection function and optionally notes that the user attached to

the operation.

Create Operation Comment

 if (hasParameter("operation-comment")) {

 var comment = getParameter("operation-comment");

 if (comment) {

Entry Functions 4-80
CAM Post Processor Guide 8/28/19

 writeComment(comment);

 }

 }
Output Operation Comment

Right Click to Show Menu to Create Operation Notes

The output of the operation notes is normally handled by the post processor property showNotes.

// user-defined properties

properties = {

…

 showNotes: false, // specifies that operation notes should be output

…

}
Define the showNotes Property

if (properties.showNotes && hasParameter("notes")) {

 var notes = getParameter("notes");

 if (notes) {

 var lines = String(notes).split("\n");

 var r1 = new RegExp("^[\\s]+", "g");

Entry Functions 4-81
CAM Post Processor Guide 8/28/19

 var r2 = new RegExp("[\\s]+$", "g");

 for (line in lines) {

 var comment = lines[line].replace(r1, "").replace(r2, "");

 if (comment) {

 writeComment(comment);

 }

 }

 }
Output Operation Notes

4.3.3 Tool Change

Tool change blocks are output whenever a new tool is loaded in the spindle or the tool change is forced,

either by a Manual NC Force tool change command or internally, for example when a safe start is

forced at each operation. The tool change blocks usually contain the following information.

1. Tool number and tool change code

2. Tool comment

3. Comment containing lower Z-limit for tool (optional)

4. Selection of next tool

5. Spindle speed and direction

6. Coolant codes

Tool Parameters Used in Tool Change

The Length Offset value is usually output with the Initial Position as described further in this chapter.

The Diameter Offset value is output with a motion block in onLinear. All other tool parameters are

output in the tool change code.

 if (insertToolCall) {

…

Entry Functions 4-82
CAM Post Processor Guide 8/28/19

 if (tool.number > numberOfToolSlots) {

 warning(localize("Tool number exceeds maximum value."));

 }

 writeBlock("T" + toolFormat.format(tool.number), mFormat.format(6));

 if (tool.comment) {

 writeComment(tool.comment);

 }

…
Output Tool Change and Tool Comment

You will have to change the setting of showToolZMin to true if you want the lower Z-limit comment

output at a tool change.

 var showToolZMin = false; // set to true to enable output of lower Z-limit

 if (showToolZMin) {

 if (is3D()) {

 var numberOfSections = getNumberOfSections();

 var zRange = currentSection.getGlobalZRange();

 var number = tool.number;

 for (var i = currentSection.getId() + 1; i < numberOfSections; ++i) {

 var section = getSection(i);

 if (section.getTool().number != number) {

 break;

 }

 zRange.expandToRange(section.getGlobalZRange());

 }

 writeComment(localize("ZMIN") + "=" + zRange.getMinimum());

 }

 }
Output Lower Limit of Z for This Operation

The selection of the next tool is optional and is controlled by the post processor property preloadTool.

// user-defined properties

properties = {

…

preloadTool: true, // preloads next tool on tool change if any

…

}
Define the preloadTool Property

The first tool will be loaded on the last operation of the program.

if (properties.preloadTool) {

 var nextTool = getNextTool(tool.number);

Entry Functions 4-83
CAM Post Processor Guide 8/28/19

 if (nextTool) {

 writeBlock("T" + toolFormat.format(nextTool.number));

 } else {

 // preload first tool

 var section = getSection(0);

 var firstToolNumber = section.getTool().number;

 if (tool.number != firstToolNumber) {

 writeBlock("T" + toolFormat.format(firstToolNumber));

 }

 }

 }
Preload the Next Tool

The spindle codes will be output with a tool change and if the spindle speed changes.

if (insertToolCall ||

 isFirstSection() ||

 (rpmFormat.areDifferent(tool.spindleRPM, sOutput.getCurrent())) ||

 (tool.clockwise != getPreviousSection().getTool().clockwise)) {

 if (tool.spindleRPM < 1) {

 error(localize("Spindle speed out of range."));

 return;

 }

 if (tool.spindleRPM > 99999) {

 warning(localize("Spindle speed exceeds maximum value."));

 }

 writeBlock(

 sOutput.format(tool.spindleRPM), mFormat.format(tool.clockwise ? 3 : 4)

);

 }
Output Spindle Codes

You will find different methods of outputting the coolant codes in the various posts. The latest method

uses a table to define the coolant on and off codes. The table is defined just after the properties table at

the top of the post processor. You can define a single code for each coolant mode or multiple codes

using an array. When adding or changing the coolant codes supported by your machine, this is the only

area of the code that needs to be changed.

var singleLineCoolant = false; // specifies to output multiple coolant codes in one line rather than in

separate lines

// samples:

// {id: COOLANT_THROUGH_TOOL, on: 88, off: 89}

// {id: COOLANT_THROUGH_TOOL, on: [8, 88], off: [9, 89]}

var coolants = [

 {id: COOLANT_FLOOD, on: 8},

 {id: COOLANT_MIST},

Entry Functions 4-84
CAM Post Processor Guide 8/28/19

 {id: COOLANT_THROUGH_TOOL, on: 88, off: 89},

 {id: COOLANT_AIR},

 {id: COOLANT_AIR_THROUGH_TOOL},

 {id: COOLANT_SUCTION},

 {id: COOLANT_FLOOD_MIST},

 {id: COOLANT_FLOOD_THROUGH_TOOL, on: [8, 88], off: [9, 89]},

 {id: COOLANT_OFF, off: 9}

];
Coolant Definition Table

The coolant code is output using the following code in onSection.

 // set coolant after we have positioned at Z

 setCoolant(tool.coolant);
Output of Coolant Codes

The setCoolant function will output each coolant code in separate blocks. It does this by calling the

getCoolantCodes function to obtain the coolant code(s) and using writeBlock to output each individual

coolant code. Both of these functions are generic in nature and should not have to be modified.

It may be that you want to output the coolant codes(s) in a block with other codes, such as the initial

position or the spindle speed. In this case you can call getCoolantCodes directly in the onSection

function and add the output of the coolant codes to the appropriate block. The following example will

output the coolant codes with the initial position of the operation.

 var coolantCodes = getCoolantCodes(tool.coolant);

 var initialPosition = getFramePosition(currentSection.getInitialPosition());

 writeBlock(

 gAbsIncModal.format(90),

 gMotionModal.format(0),

 xOutput.format(initialPosition.x),

 yOutput.format(initialPosition.y),

 coolantCodes,

);
getCoolantCodes Function Supports Multiple Codes for Single Coolant Mode

4.3.4 Work Coordinate System Offsets

The active Work Coordinate System (WCS) offset is defined in the CAM setup dialog. It defaults to 0

and if you are only using a single WCS, this should be fine as the post processor will convert it to 1. If

you are using multiple WCS, then you will need to explicitly define the WCS or the post processor will

fail when a default of 0 is used for one setup and a positive number is used for another setup. You can

override the WCS defined in the setup in either a folder or pattern.

Entry Functions 4-85
CAM Post Processor Guide 8/28/19

Define the Work Coordinate System Offset Number

WCS codes are output when a new tool is used for the operation or when the WCS offset number used is

changed. WCS offsets are typically controlled using the G54 to G59 codes and possibly an extended

syntax for handling work offsets past 6.

// wcs

 if (insertToolCall) { // force work offset when changing tool

 currentWorkOffset = undefined;

 }

 var workOffset = currentSection.workOffset;

 if (workOffset == 0) { // change work offset of 0 to 1

 warningOnce(localize("Work offset has not been specified. Using G54 as WCS."),

WARNING_WORK_OFFSET);

 workOffset = 1;

 }

 if (workOffset > 0) {

 if (workOffset > 6) { // handle work offsets greater than 6

 var code = workOffset - 6;

 if (code > 3) {

 error(localize("Work offset out of range."));

 return;

 }

 if (workOffset != currentWorkOffset) {

 forceWorkPlane();

 writeBlock(gFormat.format(59) + "." + code); // G59.n

 currentWorkOffset = workOffset;

 }

 } else { // handle work offsets 1-6

Entry Functions 4-86
CAM Post Processor Guide 8/28/19

 if (workOffset != currentWorkOffset) {

 forceWorkPlane();

 writeBlock(gFormat.format(53 + workOffset)); // G54->G59

 currentWorkOffset = workOffset;

 }

 }

 }
Output the Work Coordinate System Offset Number

4.3.5 Work Plane – 3+2 Operations

3+2 operations are supported by defining a tool orientation for the operation. This tool orientation is

referenced as the Work Plane in the post processor. The tool orientation is defined in the Geometry tab

of the operation.

Defining the Work Plane

Entry Functions 4-87
CAM Post Processor Guide 8/28/19

Work Plane for 3+2 Operation

The output for a Work Plane will either be the rotary axes positions or the definition of the Work Plane

itself as Euler angles. For machine controls that support both formats the useMultiAxisFeatures variable

is defined at the top of the post processor to determine the Work Plane method to use.

// fixed settings

var useMultiAxisFeatures = false; // false = use rotary axis positions, true = use Euler angles

The function getWorkPlaneMachineABC is used to calculate the rotary axes positions that satisfy the

Work Plane. This function is standard from post to post, but there are a couple of areas that are

controlled by user defined settings.

The first step is whether you require the rotary axes positions to be output closest to the angles used for

the previous Work Plane. This setting is false by default, but you can set it to true to enable it. You can

also define a starting position for the rotary axes so that if the first operation is a 3+2 operation, then it

will choose the closest angles to your starting angles.

var closestABC = true; // choose closest machine angles

var currentMachineABC = new Vector(0, 0, 0); // set initial angles

function getWorkPlaneMachineABC(workPlane, _setWorkPlane, _setRotation) {
Select the Closest Machine Angles when Defining the Work Plane Orientation

You will also have to define whether Tool Control Point (TCP) programming is supported by the

machine or if the tool endpoint coordinates need to be adjusted for the rotary axes positions. You do this

by setting the tcp variable to true (TCP is supported) or false (adjust points for rotary axes).

 var tcp = false;

 if (tcp) {

 setRotation(W); // TCP mode

 } else {

 var O = machineConfiguration.getOrientation(abc);

 var R = machineConfiguration.getRemainingOrientation(abc, W);

Entry Functions 4-88
CAM Post Processor Guide 8/28/19

 setRotation(R);

 }
Define the TCP Setting for 3+2 Machining

Tool Perpendicular to Rotary Table

In situations where the tool can be become perpendicular to the rotary table it is not possible to control

the rotary table position using the Work Plane. You will notice in this case that the table does not move

to satisfy the Work Plane rotation, but rather the output points are rotated to satisfy the Work Plane.

You can override this logic and have the rotary table move instead by adding the following code to the

TCP setting for 3+2 machining.

var tcp = false;

 cancelTransformation();

 if (tcp) {

 setRotation(W); // TCP mode

 } else {

 var O = machineConfiguration.getOrientation(abc);

 var R = machineConfiguration.getRemainingOrientation(abc, W);

 // rotate table if possible to satisfy Work Plane rotation

 var rotate = true;

 var axis = machineConfiguration.getAxisV();

 if (axis.isEnabled() && axis.isTable()) {

 var ix = axis.getCoordinate();

 var rotAxis = axis.getAxis();

 if (isSameDirection(machineConfiguration.getDirection(abc), rotAxis) ||

 isSameDirection(machineConfiguration.getDirection(abc), Vector.product(rotAxis, -1))) {

 var direction = isSameDirection(machineConfiguration.getDirection(abc), rotAxis) ? 1 : -1;

 abc.setCoordinate(ix, Math.atan2(R.right.y, R.right.x) * direction);

Entry Functions 4-89
CAM Post Processor Guide 8/28/19

 rotate = false;

 }

 }

 if (rotate) {

 setRotation(R);

 }

 }
Rotate Table when Tool is Perpendicular to Table

The logic that controls the Work Plane calculation is typically in the onSection function, but in some

post processors, especially those that support subprograms, you will find this logic in the

defineWorkPlane function.

 var abc = new Vector(0, 0, 0);

 // use 5-axis indexing for multi-axis mode

 if (!is3D() || machineConfiguration.isMultiAxisConfiguration()) {

 //

 if (currentSection.isMultiAxis()) {

 forceWorkPlane();

 cancelTransformation();

 } else {

 // use Euler angles for Work Plane

 if (useMultiAxisFeatures) {

 var eulerXYZ = currentSection.workPlane.getEuler2(EULER_ZXZ_R);

 abc = new Vector(eulerXYZ.x, eulerXYZ.y, eulerXYZ.z);

 cancelTransformation();

 // use rotary axes angles for Work Plane

 } else {

 abc = getWorkPlaneMachineABC(currentSection.workPlane, true, true);

 }

 // output the work plane

 setWorkPlane(abc);

 }

 } else { // pure 3D

 var remaining = currentSection.workPlane;

 if (!isSameDirection(remaining.forward, new Vector(0, 0, 1))) {

 error(localize("Tool orientation is not supported."));

 return abc;

 }

 setRotation(remaining);

 }
Work Plane Calculations

You should be aware that the X-axis direction of the Work Plane does affect the Euler angle calculation.

The typical method of defining the Work Plane is to keep the X-axis orientation pointing in the positive

direction as you look down the Z-axis, but on some table/table style machines this will cause the

Entry Functions 4-90
CAM Post Processor Guide 8/28/19

machining to be on the back side of the table, so in this case you will want the X-axis pointing in the

negative direction.

The getEuler2 function is used to calculate the Euler angles for the Work Plane. The argument passed

to the getEuler2 function specifies the order of the primary axis rotations that the machine control

requires and can be one of the values in the following table.

Parameter Parameter Parameter Parameter

EULER_XYZ_R EULER_XYX_R EULER_XZX_R EULER_XZY_R

EULER_YXY_R EULER_YXZ_R EULER_YZX_R EULER_YZY_R

EULER_ZXY_R EULER_ZXZ_R EULER_ZYX_R EULER_ZYZ_R

EULER_XYZ_S EULER_XYX_S EULER_XZX_S EULER_XZY_S

EULER_YXY_S EULER_YXZ_S EULER_YZX_S EULER_YZY_S

EULER_ZXY_S EULER_ZXZ_S EULER_ZYX_S EULER_ZYZ_S

Euler Angle Order

Check the Programming Manual for your machine to determine if Euler angles are supported and the

order of rotations. The direction of the Euler angles is also important. A general rule to follow is that

the directions should match the definition of the rotary axis using the createAxis command. If the vector

defining the rotation axis is positive for the rotary axis, then the Euler angles will be positive as shown

in the above code.

If the rotation axis is in the negative direction, usually when the machine has a rotary head, then the

Euler angles should be output in the opposite direction as shown in the following code.

 abc = new Vector(-eulerXYZ.x, -eulerXYZ.y, -eulerXYZ.z);
Output Euler Angles in Opposite Direction

The setWorkPlane function does the actual output of the Work Plane and can vary from post processor

to post processor, depending on the requirements of the machine control. It will output the calculated

Euler angles or rotary axes positions, and in some cases, both. In the following code, G68.2 is used to

define the Work Plane using Euler angles.

function setWorkPlane(abc) {

 // the Work Plane does not change, do not output it

 if (!((currentWorkPlaneABC == undefined) ||

 abcFormat.areDifferent(abc.x, currentWorkPlaneABC.x) ||

 abcFormat.areDifferent(abc.y, currentWorkPlaneABC.y) ||

 abcFormat.areDifferent(abc.z, currentWorkPlaneABC.z))) {

 return; // no change

 }

 // unlock rotary axes

 onCommand(COMMAND_UNLOCK_MULTI_AXIS);

Entry Functions 4-91
CAM Post Processor Guide 8/28/19

 // output using Euler angles

 if (useMultiAxisFeatures) {

 if (abc.isNonZero()) {

 writeBlock(gFormat.format(68.2), "X" + xyzFormat.format(0), "Y" +

 xyzFormat.format(0), "Z" + xyzFormat.format(0), "A" + abcFormat.format(abc.x),

 "B" + abcFormat.format(abc.y), "C" + abcFormat.format(abc.z));

 // Work Plane is not active

 } else {

 writeBlock(gFormat.format(69)); // cancel frame

 }

 // output rotary axes positions

 } else {

 gMotionModal.reset();

 writeBlock(

 gMotionModal.format(0),

 conditional(machineConfiguration.isMachineCoordinate(0), "A" + abcFormat.format(abc.x)),

 conditional(machineConfiguration.isMachineCoordinate(1), "B" + abcFormat.format(abc.y)),

 conditional(machineConfiguration.isMachineCoordinate(2), "C" + abcFormat.format(abc.z))

);

 }

 // lock rotary axes

 onCommand(COMMAND_LOCK_MULTI_AXIS);

 currentWorkPlaneABC = abc;

}
Output Work Plane in setWorkPlane Function

Some machine controls require that the rotary axes positions be output prior to the Euler angle block. If

this is the case, then the code to output the Work Plane can be modified to output both variations of the

Work Plane.

 if (true && machineConfiguration.isMultiAxisConfiguration()) { // prepositioning for ABC axes

 var angles =

 abc.isNonZero() ? getWorkPlaneMachineABC(currentSection.workPlane, false, false) : abc;

 gMotionModal.reset();

 writeBlock(

 gMotionModal.format(0),

 conditional(machineConfiguration.isMachineCoordinate(0), "A" + abcFormat.format(angles.x)),

 conditional(machineConfiguration.isMachineCoordinate(1), "B" + abcFormat.format(angles.y)),

 conditional(machineConfiguration.isMachineCoordinate(2), "C" + abcFormat.format(angles.z))

);

 }

 // output Euler angles

 if (abc.isNonZero()) {

Entry Functions 4-92
CAM Post Processor Guide 8/28/19

 writeBlock(gFormat.format(68.2), "X" + xyzFormat.format(0), "Y" +

 xyzFormat.format(0), "Z" + xyzFormat.format(0), "A" + abcFormat.format(abc.x),

 "B" + abcFormat.format(abc.y), "C" + abcFormat.format(abc.z));

 // Work Plane is not active

 } else {

 writeBlock(gFormat.format(69)); // cancel frame

 }
Output Rotary Axes Positions and Work Plane Euler Angles

4.3.6 Initial Position

The initial position of the operation is available to the onSection function and is output here. Tool

length compensation on the control is enabled with the initial position when the tool is changed or if it

has been disabled between operations.

 // force all axes to be output at start of operation

 forceAny();

 // get the initial tool position and retract in Z if necessary

 var initialPosition = getFramePosition(currentSection.getInitialPosition());

 if (!retracted) {

 if (getCurrentPosition().z < initialPosition.z) {

 writeBlock(gMotionModal.format(0), zOutput.format(initialPosition.z));

 }

 }

 // output tool length offset on tool change or if tool has been retracted

 if (insertToolCall || retracted) {

 var lengthOffset = tool.lengthOffset;

 if (lengthOffset > numberOfToolSlots) {

 error(localize("Length offset out of range."));

 return;

 }

 gMotionModal.reset();

 writeBlock(gPlaneModal.format(17));

 // output XY and then Z with 3-axis or table configuration

 if (!machineConfiguration.isHeadConfiguration()) {

 writeBlock(

 gAbsIncModal.format(90),

 gMotionModal.format(0), xOutput.format(initialPosition.x), yOutput.format(initialPosition.y)

);

 writeBlock(gMotionModal.format(0), gFormat.format(43), zOutput.format(initialPosition.z),

 hFormat.format(lengthOffset));

 // output XYZ with head configuration

Entry Functions 4-93
CAM Post Processor Guide 8/28/19

 } else {

 writeBlock(

 gAbsIncModal.format(90),

 gMotionModal.format(0),

 gFormat.format(43), xOutput.format(initialPosition.x),

 yOutput.format(initialPosition.y),

 zOutput.format(initialPosition.z), hFormat.format(lengthOffset)

);

 }

 // do not activate tool length compensation if already activated

 } else {

 writeBlock(

 gAbsIncModal.format(90),

 gMotionModal.format(0),

 xOutput.format(initialPosition.x),

 yOutput.format(initialPosition.y)

);

 }
Output Current Position and Tool Length Compensation

4.4 onSectionEnd

function onSectionEnd() {

The onSectionEnd function can be used to define the end of an operation, but in most post processors

this is handled in the onSection function. The reason for this is that different output will be generated

depending on if there is a tool change, WCS change, or Work Plane change and this logic is handled in

the onSection function (see the insertToolCall variable), though it could be handled in the onSectionEnd

function if desired by referencing the getNextSection and isLastSection functions.

 var insertToolCall = isLastSection() ||

 getNextSection().getForceToolChange && getNextSection().getForceToolChange() ||

 (getNextSection().getTool().number != tool.number);

 var retracted = false; // specifies that the tool has been retracted to the safe plane

 var newWorkOffset = isLastSection() ||

 (currentSection.workOffset != getNextSection().workOffset); // work offset changes

 var newWorkPlane = isLastSection() ||

 !isSameDirection(currentSection.getGlobalFinalToolAxis(),

 getNextSection().getGlobalInitialToolAxis());

 if (insertToolCall || newWorkOffset || newWorkPlane) {

 // stop spindle before retract during tool change

 if (insertToolCall) {

 onCommand(COMMAND_STOP_SPINDLE);

 }

Entry Functions 4-94
CAM Post Processor Guide 8/28/19

 // retract to safe plane

 retracted = true;

 writeBlock(gFormat.format(28), gAbsIncModal.format(91), "Z" + xyzFormat.format(0)); // retract

 writeBlock(gAbsIncModal.format(90));

 zOutput.reset();

 if (insertToolCall) {

 onCommand(COMMAND_COOLANT_OFF);

 if (properties.optionalStop) {

 onCommand(COMMAND_OPTIONAL_STOP);

 }

 }

 }
 Ending the Operation in onSectionEnd

You will need to remove the similar code from the onSection function and probably the onClose

function, which will duplicate the session ending code if left intact.

One reason for ending the operation in the onSectionEnd function is if a Manual NC command is used

between operations. The Manual NC command will be processed prior to the onSection function and if

the previous operation is terminated in onSection, then the Manual NC command will be acted upon

prior to ending the previous operation.

The onSectionEnd function is pretty basic in most posts and will reset codes that may have been

changed in the operation and possibly some variables that are operation specific.

function onSectionEnd() {

 writeBlock(gPlaneModal.format(17));

 forceAny();

}
Basic onSectionEnd Function

4.5 onClose

function onClose() {

The onClose function is called at the end of the last operation, after onSectionEnd. It is used to define

the end of an operation, if not handled in onSectionEnd, and to output the end-of-program codes.

function onClose() {

 // end previous operation

 writeln("");

 optionalSection = false;

 onCommand(COMMAND_COOLANT_OFF);

Entry Functions 4-95
CAM Post Processor Guide 8/28/19

 writeRetract(Z); // retract

 disableLengthCompensation(true);

 setSmoothing(false);

 zOutput.reset();

 setWorkPlane(new Vector(0, 0, 0)); // reset working plane

 writeRetract(X, Y); // return to home

 // output end-of-program codes

 onImpliedCommand(COMMAND_END);

 onImpliedCommand(COMMAND_STOP_SPINDLE);

 writeBlock(mFormat.format(30)); // stop program, spindle stop, coolant off

 writeln("%");

}
Basic onClose Function

4.6 onTerminate

function onTerminate() {

The onTerminate function is called at the end of post processing, after onClose. It is called after all

output to the NC file is finished and the NC file is closed. It may be used to rename the output file(s)

after processing has finished, to automatically create a setup sheet, or to run another program against the

output NC file.

function onTerminate() {

 var outputPath = getOutputPath();

 var programFilename = FileSystem.getFilename(outputPath);

 var programSize = FileSystem.getFileSize(outputPath);

 var postPath = findFile("setup-sheet-excel-2007.cps");

 var intermediatePath = getIntermediatePath();

 var a = "--property unit " + ((unit == IN) ? "0" : "1"); // use 0 for inch and 1 for mm

 if (programName) {

 a += " --property programName \"'" + programName + "'\"";

 }

 if (programComment) {

 a += " --property programComment \"'" + programComment + "'\"";

 }

 a += " --property programFilename \"'" + programFilename + "'\"";

 a += " --property programSize \"" + programSize + "\"";

 a += " --noeditor --log temp.log \"" + postPath + "\" \"" + intermediatePath + "\" \"" +

 FileSystem.replaceExtension(outputPath, "xlsx") + "\"";

 execute(getPostProcessorPath(), a, false, "");

 executeNoWait("excel", "\"" + FileSystem.replaceExtension(outputPath, "xlsx") + "\"", false, "");

}
Create and Display Setup Sheet from onTerminate

Entry Functions 4-96
CAM Post Processor Guide 8/28/19

4.7 onCommand

function onCommand(command) {

Arguments Description

command Command to process.

The onCommand function can be called by a Manual NC command, directly from HSM, or from the

post processor.

Command Description
COMMAND_ACTIVATE_SPEED_FEED_SYNCHRONIZATION Activate threading mode
COMMAND_ALARM Alarm
COMMAND_ALERT Alert
COMMAND_BREAK_CONTROL Tool break control
COMMAND_CALIBRATE Run calibration cycle
COMMAN_CHANGE_PALLET Change pallet
COMMAND_CLEAN Run cleaning cycle
COMMAND_CLOSE_DOOR Close primary door
COMMAND_COOLANT_OFF Coolant off (M09)
COMMAND_COOLANT_ON Coolant on (M08)
COMMAND_DEACTIVATE_SPEED_FEED_SYNCHRONIZATION Deactivate threading mode
COMMAND_END Program end (M02)
COMMAND_EXACT_STOP Exact stop
COMMAND_LOAD_TOOL Tool change (M06)
COMMAND_LOCK_MULTI_AXIS Locks the rotary axes
COMMAND_MAIN_CHUCK_CLOSE Close main chuck
COMMAND_MAIN_CHUCK_OPEN Open main chuck
COMMAND_OPEN_DOOR Open primary door
COMMAND_OPTIONAL_STOP Optional program stop (M01)
COMMAND_ORIENTATE_SPINDLE Orientate spindle (M19)
COMMAND_POWER_OFF Power off
COMMAND_POWER_ON Power on
COMMAND_SECONDARY_CHUCK_CLOSE Close secondary chuck
COMMAND_SECONDARY_CHUCK_OPEN Open secondary chuck
COMMAND_SECONDARY_SPINDLE_SYNCHRONIZATION_ACTIVATE Activate spindle synchronization
COMMAND_SECONDARY_SPINDLE_SYNCHRONIZATION_DEACTIVATE Deactivate spindle synchronization
COMMAND_SPINDLE_CLOCKWISE Clockwise spindle direction (M03)
COMMAND_SPINDLE_COUNTERCLOCKWISE Counter-clockwise spindle direction

(M04)
COMMAND_START_CHIP_TRANSPORT Start chip conveyor
COMMAND_START_SPINDLE Start spindle in previous direction
COMMAND_STOP Program stop (M00)
COMMAND_STOP_CHIP_TRANSPORT Stop chip conveyor

Entry Functions 4-97
CAM Post Processor Guide 8/28/19

Command Description
COMMAND_STOP_SPINDLE Stop spindle (M05)
COMMAND_TOOL_MEASURE Measure tool
COMMAND_UNLOCK_MULTI_AXIS Unlocks the rotary axes
COMMAND_VERIFY Verify path/tool/machine integrity

Valid Commands

The Manual NC commands that call onCommand are described in the Manual NC Commands chapter.

Internal calls to onCommand are usually generated when expanding a cycle. The post processor itself

will call onCommand directly to perform simple functions, such as outputting a program stop, cancelling

coolant, opening the main door, turning on the chip conveyor, etc.

 // stop spindle and cancel coolant before retract during tool change

 if (insertToolCall && !isFirstSection()) {

 onCommand(COMMAND_COOLANT_OFF);

 onCommand(COMMAND_STOP_SPINDLE);

 }
Calling onCommand Directly from Post Processor

The onImpliedCommand function changes the state of certain settings in the post engine without calling

onCommand and outputting the associated codes with the command. The state of certain parameters is

important when the post processor engine expands cycles.

 onImpliedCommand(COMMAND_END);

 onImpliedCommand(COMMAND_STOP_SPINDLE);

 onImpliedCommand(COMMAND_COOLANT_OFF);

 writeBlock(mFormat.format(30)); // stop program, spindle stop, coolant off
Using onImpliedCommand

4.8 onComment

function onComment(message) {

Arguments Description

message Text of comment to output.

The onComment function is called when the Manual NC command Comment is issued. It will format

and output the text of the comment to the NC file.

Entry Functions 4-98
CAM Post Processor Guide 8/28/19

The Comment Manual NC Command

There are two other functions that are used to format and output comments, formatComment and

writeComment. These comment functions are standard in nature and do not typically have to be

modified, though the permittedCommentChars variable, defined at the top of the post, is used to define

the characters that are allowed in a comment and may have to be changed to match the control. The

formatComment function will remove any characters in the comment that are not specified in this

variable. Lowercase letters will be converted to uppercase by the formatComment function. If you want

to support lowercase letters, then they would have to be added to the permittedCommentChars variable

and the formatComment function would need to have the conversion to uppercase removed.

var permittedCommentChars = " ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.,=_-";
Defining the Permitted Characters for Comments

/** Format a comment */

function formatComment(text) {

 return "(" + filterText(String(text).toUpperCase(), permittedCommentChars).replace(/[\(\)]/g, "") +

")";

}

/** Output a comment */

function writeComment(text) {

 writeln(formatComment(text));

}

/** Process the Manual NC Comment command */

function onComment(message) {

 var comments = String(message).split(";"); // allow multiple lines of comments per command

 for (comment in comments) {

 writeComment(comments[comment]);

 }

}
The Comment Functions

4.9 onDwell

function onDwell(seconds) {

Entry Functions 4-99
CAM Post Processor Guide 8/28/19

Arguments Description

seconds Dwell time in seconds.

The onDwell function can be called by a Manual NC command, directly from HSM, or from the post

processor. The Manual NC command that calls onDwell is described in the Manual NC Commands

chapter. Internal calls to onDwell are usually generated when expanding a cycle. The post processor

itself will call onDwell directly to output a dwell block.

function onDwell(seconds) {

 if (seconds > 99999.999) {

 warning(localize("Dwelling time is out of range."));

 }

 milliseconds = clamp(1, seconds * 1000, 99999999);

 writeBlock(gFeedModeModal.format(94), gFormat.format(4), "P" +

 milliFormat.format(milliseconds));

}
Output the Dwell Time in Milliseconds

 onCommand(COMMAND_COOLANT_ON);

 onDwell(1.0); // dwell 1 second after turning coolant on
Calling onDwell Directly from Post Processor

4.10 onParameter

function onParameter(name, value) {

Arguments Description

name Parameter name.

value Value stored in the parameter.

Almost all parameters used for creating a machining operation in HSM are passed to the post processor.

Common parameters are available using built in post processor variables (currentSection, tool, cycle,

etc.) as well as being made available as parameters. Other parameters are passed to the onParameter

function.

74: onParameter('operation:context', 'operation')

75: onParameter('operation:strategy', 'drill')

76: onParameter('operation:operation_description', 'Drill')

77: onParameter('operation:tool_type', 'tap right hand')

78: onParameter('operation:undercut', 0)

79: onParameter('operation:tool_isTurning', 0)

80: onParameter('operation:tool_isMill', 0)

81: onParameter('operation:tool_isDrill', 1)

82: onParameter('operation:tool_taperedType', 'tapered_bull_nose')

83: onParameter('operation:tool_unit', 'inches')

Entry Functions 4-100
CAM Post Processor Guide 8/28/19

84: onParameter('operation:tool_number', 4)

85: onParameter('operation:tool_diameterOffset', 4)

86: onParameter('operation:tool_lengthOffset', 4)
Sample Parameters Passed to the onParameter Function from Dump Post Processor

The name of the parameter along with its value is passed to the onParameter function. Some Manual

NC commands will call the onParameter function, these are described in the Manual NC Commands

chapter. You can see how to run and analyze the output from the dump.cps post processor in the

Debugging chapter.

function onParameter(name, value) {

 if (name == "probe-output-work-offset") {

 probeOutputWorkOffset = (value > 0) ? value : 1;

 }

}
 Sample onParameter Function

4.10.1 getParameter Function

value = getParameter(name)

Arguments Description

name Parameter name.

You can retrieve operation parameters at any place in the post processor by calling the getParameter

function. Operation parameters are defined as parameters that are redefined for each machining

operation. There is a chance that a parameter does not exist in all flavors of HSM, so it is recommended

that the presence of the parameter is first verified by calling the hasParameter function.

 if (hasParameter("operation-comment")) {

 var comment = getParameter("operation-comment");

 if (comment) {

 writeComment(comment);

 }

 }
Verify a Parameter Exists Using the hasParameter Function

When scanning through the operations in the intermediate file it is possible to access the parameters for

that operation by using the section variant of the hasParameter and getParameter functions.

 // write out all operation comments

 writeln("List of Operations:");

 for (var i = 0; i < getNumberOfSections(); ++i) {

 var section = getSection(i);

 if (section.hasParameter("operation-comment") {

 var comment = section.getParameter("operation-comment");

Entry Functions 4-101
CAM Post Processor Guide 8/28/19

 if (comment) {

 writeln(" " + comment);

 }

 }

 }

 writeln("");
Using Section Variant of getParameter

4.10.2 getGlobalParameter Function

value = getGlobalParameter(name)

Arguments Description

name Parameter name.

Some parameters are defined at the start of the intermediate file prior to the first operation. These

parameters are considered global and are accessed using the hasGlobalParameter and

getGlobalParameter functions. The same rules that apply to the operation parameters apply to global

parameters.

-1: onOpen()

0: onParameter('product-id', 'fusion360')

1: onParameter('generated-by', 'Fusion 360 CAM 2.0.3803')

2: onParameter('generated-at', 'Saturday, March 24, 2018 4:34:36 PM')

3: onParameter('hostname', 'host')

4: onParameter('username', 'user')

5: onParameter('document-path', 'Water-Laser-Plasma v2')

6: onParameter('leads-supported', 1)

7: onParameter('job-description', 'Laser')

9: onParameter('stock', '((0, 0, -5), (300, 200, 0))')

11: onParameter('stock-lower-x', 0)

13: onParameter('stock-lower-y', 0)

15: onParameter('stock-lower-z', -5)

17: onParameter('stock-upper-x', 300)

19: onParameter('stock-upper-y', 200)

21: onParameter('stock-upper-z', 0)

23: onParameter('part-lower-x', 0)

25: onParameter('part-lower-y', 0)

27: onParameter('part-lower-z', -5)

29: onParameter('part-upper-x', 300)

31: onParameter('part-upper-y', 200)

33: onParameter('part-upper-z', 0)

35: onParameter('notes', '')
Sample Global Variables

Entry Functions 4-102
CAM Post Processor Guide 8/28/19

When processing multiple setups at the same time some of the global parameters will change from one

setup to the next. The getGlobalParameter function though will always reference the parameters of the

first setup, so if you want to access the parameters of the active setup then you will need to use the

onParameter function rather than the getGlobalParameter function.

function onParameter(name, value) {

 if (name == "job-description") {

 setupName = value;

 }

}
Using onParameter to Store the Active Setup Name

4.11 onPassThrough

Function onPassThrough (value)

Arguments Description

value Text to be output to the NC file.

The onPassThrough function is called by the Pass through Manual NC command and is used to pass a

text string directly to the NC file without any processing by the post processor. This function is

described in the Manual NC Commands chapter.

4.12 onSpindleSpeed

function onSpindleSpeed(speed) {

Arguments Description

spindleSpeed The new spindle speed in RPM.

The onSpindleSpeed function is used to output changes in the spindle speed during an operation,

typically from the post processor engine when expanding a cycle.

function onSpindleSpeed(spindleSpeed) {

 writeBlock(sOutput.format(spindleSpeed));

}
Sample onSpindleSpeed Function

4.13 onOrientateSpindle

function onOrientateSpindle(angle) {

Arguments Description

angle Spindle orientation angle in radians.

Entry Functions 4-103
CAM Post Processor Guide 8/28/19

The onOrientateSpindle function is not typically called. When a cycle that orientates the spindle is

expanded the onCommand(COMMAND_ORIENTATE_SPINDLE) function is called.

4.14 onRadiusCompensation

function onRadiusCompensation() {

The onRadiusCompensation function is called when the radius (cutter) compensation mode changes. It

will typically set the pending compensation mode, which will be handled in the motion functions

(onRapid, onLinear, onCircular, etc.). Radius compensation, when enabled in an operation, will be

enabled on the move approaching the part and disabled after moving off the part.

The state of radius compensation is stored in the global radiusCompensation variable and is not passed

to the onRadiusCompensation function. Radius compensation is defined when creating the machining

operation in HSM (1). The Sideways Compensation (2) setting determines the side of the part that the

tool will be on when cutting. It is based on the forward direction of the tool during the cutting operation.

Enabling/Disabling Radius Compensation

Compensation Type Description

In computer The tool is offset from the part based on the tool diameter. The center

line of the offset tool is sent to the post processor and the radius

compensation mode is OFF (G40).

In control The tool is not offset from the part. The centerline of the tool as if it is

on the part is sent to the post processor and the radius compensation

mode is determined by the Sideways Compensation setting (G41/G42).

The control will perform the entire offsetting of the tool.

Wear The tool is offset from the part based on the tool diameter. The center

line of the offset tool is sent to the post processor and the radius

compensation mode is determined by the Sideways Compensation

setting (G41/G42). The control will compensate for tool wear.

Entry Functions 4-104
CAM Post Processor Guide 8/28/19

Compensation Type Description

Inverse wear Same as Wear, but the opposite compensation direction will be used

(G42/G41).

Off The tool is not offset from the part. The centerline of the tool as if it is

on the part is sent to the post processor and the radius compensation

mode will be disabled (G40).
Radius Compensation Modes

var pendingRadiusCompensation = -1;

function onRadiusCompensation() {

 pendingRadiusCompensation = radiusCompensation;

}
Sample onRadiusCompensation Function

4.15 onMovement

function onMovement(movement) {

Arguments Description

movement Movement type for the following motion(s).

onMovement is called whenever the movement type changes. It is used to tell the post when there is a

positioning, entry, exit, or cutting type move. There is also a movement global variable that contains the

movement setting. This variable can be referenced directly in other functions, such as onLinear, to

access the movement type without defining the onMovement function.

The supported movement types are listed in the following table.

Movement Type Description

MOVEMENT_CUTTING Standard cutting motion.

MOVEMENT_EXTENDED Extended movement type. Not common.

MOVEMENT_FINISH_CUTTING Finish cutting motion.

MOVEMENT_HIGH_FEED Movement at high feedrate. Not typically used. Rapid moves

output using a linear move at the high feedrate will use the

MOVEMENT_RAPID type.

MOVEMENT_LEAD_IN Lead-in motion.

MOVEMENT_LEAD_OUT Lead-out motion.

MOVEMENT_LINK_DIRECT Direction (non-cutting) linking move.

MOVEMENT_LINK_TRANSITION Transition (cutting) linking move.

MOVEMENT_PLUNGE Plunging move.

MOVEMENT_PREDRILL Predrilling motion.

MOVEMENT_RAMP Ramping entry motion.

MOVEMENT_RAMP_HELIX Helical ramping motion.

MOVEMENT_RAMP_PROFILE Profile ramping motion.

Entry Functions 4-105
CAM Post Processor Guide 8/28/19

Movement Type Description

MOVEMEN_RAMP_ZIG_ZAG Zig-Zag ramping motion.

MOVEMENT_RAPID Rapid movement.

MOVEMENT_REDUCED Reduced cutting motion.
Movement Types

Movement types are used in defining parametric feedrates in some milling posts and for removing all

non-cutting moves for waterjet/plasma/laser machines that require only the cutting profile.

4.16 onRapid

function onRapid(_x, _y, _z) {

Arguments Description

_x, _y, _z The tool position.

The onRapid function handles rapid positioning moves (G00) while in 3-axis mode. The tool position is

passed as the _x, _y, _z arguments. The format of the onRapid function is pretty basic, it will handle a

change in radius compensation, may determine if the rapid moves should be output at a high feedrate

(due to the machine making dogleg moves while in rapid mode), and output the rapid move to the NC

file.

If the High feedrate mapping property is set to Always use high feed, then the onLinear function will be

called with the high feedrate passed in as the feedrate and the onRapid function will not be called.

Using High Feedrates for Positioning Moves

function onRapid(_x, _y, _z) {

 // format tool position for output

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 // ignore if tool does not move

Entry Functions 4-106
CAM Post Processor Guide 8/28/19

 if (x || y || z) {

 if (pendingRadiusCompensation >= 0) { // handle radius compensation

 error(localize("Radius compensation mode cannot be changed at rapid traversal."));

 return;

 }

 // output move at high feedrate if movement in more than one axis

 if (!properties.useG0 && (((x ? 1 : 0) + (y ? 1 : 0) + (z ? 1 : 0)) > 1)) {

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), x, y, z,

 getFeed(highFeedrate));

 // output move in rapid mode

 } else {

 writeBlock(gMotionModal.format(0), x, y, z);

 forceFeed();

 }

 }

}
Sample onRapid Function

4.17 onExpandedRapid

onExpandedRapid(x, y, z);

Arguments Description

x, y, z The tool position.

It is possible that the post processor will need to generate rapid positioning moves during the processing

of the intermediate file. An example would be creating your own expanded drilling cycle. Instead of

calling onRapid with the post generated moves, it is recommended that onExpandedRapid be called

instead. This will ensure that the post engine is notified of the move and the current position is set.

onExpandedRapid will then call onRapid with the provided arguments.

The onExpandedRapid function is not considered an entry function, since it will never be called directly

by the post processor engine.

4.18 onLinear

function onLinear(_x, _y, _z, feed) {

Arguments Description

_x, _y, _z The tool position.

feed The feedrate.

Entry Functions 4-107
CAM Post Processor Guide 8/28/19

The onLinear function handles linear moves (G01) at a feedrate while in 3-axis mode. The tool position

is passed as the _x, _y, _z arguments. The format of the onLinear function is pretty basic, it will handle

a change in radius compensation and outputs the linear move to the NC file.

function onLinear(_x, _y, _z, feed) {

 // force move when radius compensation changes

 if (pendingRadiusCompensation >= 0) {

 xOutput.reset();

 yOutput.reset();

 }

 // format tool position for output

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var f = getFeed(feed);

 // ignore if tool does not move

 if (x || y || z) {

 // handle radius compensation changes

 if (pendingRadiusCompensation >= 0) {

 pendingRadiusCompensation = -1;

 var d = tool.diameterOffset;

 if (d > 200) {

 warning(localize("The diameter offset exceeds the maximum value."));

 }

 writeBlock(gPlaneModal.format(17));

 switch (radiusCompensation) {

 case RADIUS_COMPENSATION_LEFT:

 dOutput.reset();

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(41), x, y, z,

 dOutput.format(d), f);

 break;

 case RADIUS_COMPENSATION_RIGHT:

 dOutput.reset();

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(42), x, y, z,

 dOutput.format(d), f);

 break;

 default:

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(40), x, y, z,

 f);

 }

 // output non-compensation change move at feedrate

 } else {

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), x, y, z, f);

 }

Entry Functions 4-108
CAM Post Processor Guide 8/28/19

 // no movement, but feedrate changes

 } else if (f) {

 if (getNextRecord().isMotion()) { // try not to output feed without motion

 forceFeed(); // force feed on next line

 } else {

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), f);

 }

 }

}
Sample onLinear Function

4.19 onExpandedLinear

onExpandedLinear(x, y, z, feed);

Arguments Description

_x, _y, _z The tool position.

feed The feedrate.

It is possible that the post processor will need to generate cutting moves during the processing of the

intermediate file. An example would be creating your own expanded drilling cycle. Instead of calling

onLinear with the post generated moves, it is recommended that onExpandedLinear be called instead.

This will ensure that the post engine is notified of the move and the current position is set.

onExpandedLinear will then call onLinear with the provided arguments.

The onExpandedLinear function is not considered an entry function, since it will never be called directly

by the post processor engine.

4.20 onRapid5D

function onRapid5D(_x, _y, _z, _a, _b, _c) {

Arguments Description

_x, _y, _z The tool position.

_a, _b, _c The rotary angles if a machine configuration has been defined, otherwise the

tool axis vector is passed.

The onRapid5D function handles rapid positioning moves (G00) in multi-axis operations. The tool

position is passed as the _x, _y, _z arguments and the rotary angles as the _a, _b, _c arguments. If a

machine configuration has not been defined, then _a, _b, _c contains the tool axis vector. The

onRapid5D function will be called for all rapid moves in a multi-axis operation, even if the move is only

a 3-axis linear move without rotary movement.

Like the onRapid function, the onRapid5D function handles a change in radius compensation, may

determine if the rapid moves should be output at a high feedrate (due to the machine making dogleg

moves while in rapid mode), and outputs the rapid move to the NC file.

Entry Functions 4-109
CAM Post Processor Guide 8/28/19

function onRapid5D(_x, _y, _z, _a, _b, _c) {

 // enable this code if machine does not accept IJK tool axis vector input

 if (false) {

 if (!currentSection.isOptimizedForMachine()) {

 error(localize("This post configuration has not been customized for 5-axis toolpath."));

 return;

 }

 }

 // handle radius compensation changes

 if (pendingRadiusCompensation >= 0) {

 error(localize("Radius compensation mode cannot be changed at rapid traversal."));

 return;

 }

 // Machine Configuration has been defined, output rotary angles with move

 if (currentSection.isOptimizedForMachine()) {

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(_c);

 writeBlock(gMotionModal.format(0), x, y, z, a, b, c);

 // Machine Configuration has not been defined, output tool axis with move

 } else {

 forceXYZ();

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var i = ijkFormat.format(_a);

 var j = ijkFormat.format(_b);

 var k = ijkFormat.format(_c);

 writeBlock(gMotionModal.format(0), x, y, z, "I" + i, "J" + j, "K" + k);

 }

 forceFeed();

}
Sample onRapid5D Function

Please refer to the Multi-Axis Post Processors chapter for a detailed explanation on supporting a multi-

axis machine.

4.21 onLinear5D

function onLinear5D(_x, _y, _z, _a, _b, _c, feed) {

Entry Functions 4-110
CAM Post Processor Guide 8/28/19

Arguments Description

_x, _y, _z The tool position.

_a, _b, _c The rotary angles if a machine configuration has been defined, otherwise the

tool axis vector is passed.

feed The feedrate.

The onLinear5D function handles cutting moves (G01) in multi-axis operations. The tool position is

passed as the _x, _y, _z arguments and the rotary angles as the _a, _b, _c arguments. If a machine

configuration has not been defined, then _a, _b, _c contains the tool axis vector. The onLinear5D

function will be called for all cutting moves in a multi-axis operation, even if the move is only a 3-axis

linear move without rotary movement.

Like the onLinear function, the onLinear5D function handles a change in radius compensation, and

outputs the cutting move to the NC file.

function onLinear5D(_x, _y, _z, _a, _b, _c, feed) {

 // enable this code if machine does not accept IJK tool axis vector input

 if (false) {

 if (!currentSection.isOptimizedForMachine()) {

 error(localize("This post configuration has not been customized for 5-axis toolpath."));

 return;

 }

 }

 // handle radius compensation changes

 if (pendingRadiusCompensation >= 0) {

 error(localize("Radius compensation cannot be activated/deactivated for 5-axis move."));

 return;

 }

 // Machine Configuration has been defined, output rotary angles with move

 if (currentSection.isOptimizedForMachine()) {

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(_c);

 // calculate multi-axis feedrate

 var f = {frn:0, fmode:0};

 if (a || b || c) {

 f = getMultiaxisFeed(_x, _y, _z, _a, _b, _c, feed);

 } else {

 f.frn = getFeed(feed);

 f.fmode = 94;

Entry Functions 4-111
CAM Post Processor Guide 8/28/19

 }

 // ignore if tool does not move

 if (x || y || z || a || b || c) {

 writeBlock(gMotionModal.format(1), x, y, z, a, b, c, f);

 } else if (f) {

 if (getNextRecord().isMotion()) { // try not to output feed without motion

 forceFeed(); // force feed on next line

 } else {

 writeBlock(gMotionModal.format(1), f);

 }

 }

 // Machine Configuration has not been defined, output tool axis with move

 } else {

 forceXYZ();

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var i = ijkFormat.format(_a);

 var j = ijkFormat.format(_b);

 var k = ijkFormat.format(_c);

 var f = getFeed(feed);

 // ignore if tool does not move

 if (x || y || z || i || j || k) {

 writeBlock(gMotionModal.format(1), x, y, z, "I" + i, "J" + j, "K" + k, f);

 } else if (f) {

 if (getNextRecord().isMotion()) { // try not to output feed without motion

 forceFeed(); // force feed on next line

 } else {

 writeBlock(gMotionModal.format(1), f);

 }

 }

 }

}
Sample onLinear5D Function

Please refer to the Multi-Axis Post Processors chapter for a detailed explanation on supporting a multi-

axis machine.

4.22 onCircular

function onCircular(clockwise, cx, cy, cz, x, y, z, feed) {

Entry Functions 4-112
CAM Post Processor Guide 8/28/19

Argument Description

clockwise Set to true if the circular direction is in the clockwise direction, false if

counter-clockwise.

cx, cy, cz Center coordinates of circle.

x, y, z Final point on circle

feed The feedrate.

The onCircular function is called whenever there is circular, helical, or spiral motion. The circular

move can be in any of the 3 standard planes, XY-plane, YZ-plane, or ZX-plane, it is up to the

onCircular function to determine which types of circular are valid for the machine and to correctly

format the output.

The structure of the onCircular function in most posts uses the following layout.

1. Test for radius compensation. Most controls do not allow radius compensation to be started on a

circular move.

2. Full circle output.

3. Center point (IJK) output.

4. Radius output.

Each of the different styles of output will individually handle the output of circular interpolation in each

of the planes and possibly 3-D circular interpolation if it is supported.

 if (pendingRadiusCompensation >= 0) { // Disallow radius compensation

 error(localize("Radius compensation cannot be activated/deactivated for a circular move."));

 return;

 }

…

 if (isFullCircle()) { // Full 360 degree circles

 if (properties.useRadius || isHelical()) { // radius mode does not support full arcs

 linearize(tolerance);

 return;

 }

…

 } else if (!properties.useRadius) { // Incremental center point output

 switch (getCircularPlane()) {

 case PLANE_XY:

…

 } else { // Use radius mode

 var r = getCircularRadius();

 if (toDeg(getCircularSweep()) > (180 + 1e-9)) {

 r = -r; // allow up to <360 deg arcs

 }

…

Standard onCircular Structure

Entry Functions 4-113
CAM Post Processor Guide 8/28/19

 switch (getCircularPlane()) {

 case PLANE_XY:

 writeBlock(gPlaneModal.format(17), gMotionModal.format(clockwise ? 2 : 3),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 iOutput.format(cx - start.x, 0), jOutput.format(cy - start.y, 0), getFeed(feed));

 break;

 case PLANE_ZX:

 writeBlock(gPlaneModal.format(18), gMotionModal.format(clockwise ? 2 : 3),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 iOutput.format(cx - start.x, 0), kOutput.format(cz - start.z, 0), getFeed(feed));

 break;

 case PLANE_YZ:

 writeBlock(gPlaneModal.format(19), gMotionModal.format(clockwise ? 2 : 3),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 jOutput.format(cy - start.y, 0), kOutput.format(cz - start.z, 0), getFeed(feed));

 break;

 default: // circular record is not in major plane

 linearize(tolerance);

 }
Circular Output Based on Plane

4.22.1 Circular Interpolation Settings

There are settings that affect how circular interpolation is handled in the post engine, basically telling

the post engine when to call onCircular or when to linearize the points by calling onLinear multiple

times instead. The following table describes the circular interpolation settings.

Setting Description

allowedCircularPlanes Defines the standard planes that circular interpolation is allowed in,

PLANE_XY, PLANE_YZ, PLANE_ZX. It can be set to undefined to

allow circular interpolation in all three planes, 0 to disable circular

interpolation, or a bit mask of PLANE_XY, PLANE_YZ, and/or

PLANE_YZ to allow only certain planes.

allowHelicalMoves Helical interpolation is allowed when this variable is set to true. Helical

moves are linearized if set to false.

allowSpiralMoves Spiral interpolation is defined as circular moves that have a different

starting radius than ending radius and can be enabled by setting this

variable to true. Spiral moves are linearized if set to false.

maximumCircularRadius Specifies the maximum radius of circular moves that can be output as

circular interpolation and can be changed dynamically in the Property

table when running the post processor. Any circular records whose radius

exceeds this value will be linearized. This variable must be set in

millimeters (MM).

 maximumCircularRadius = spatial(1000, MM); // 39.37 inch

Entry Functions 4-114
CAM Post Processor Guide 8/28/19

Setting Description

maximumCircularSweep Specifies the maximum angular sweep of circular moves that can be

output as circular interpolation and is specified in radians. Any circular

records whose delta angle exceeds this value will be linearized.

minimumChordLength Specifies the minimum delta movement allowed for circular interpolation

and can be changed dynamically in the Property table when running the

post processor. Any circular records whose delta linear movement is less

than this value will be linearized. This variable must be set in millimeters

(MM).

minimumCircularRadius Specifies the minimum radius of circular moves that can be output as

circular interpolation and can be changed dynamically in the Property

table when running the post processor. Any circular records whose radius

is less than this value will be linearized. This variable must be set in

millimeters (MM).

minimumCircularSweep Specifies the minimum angular sweep of circular moves that can be output

as circular interpolation and is specified in radians. Any circular records

whose delta angle is less than this value will be linearized.

tolerance Specifies the tolerance used to linearize circular moves that are expanded

into a series of linear moves. Circular interpolation records can be

linearized due to the conditions of the circular interpolation settings not

being met or by the linearize function being called. This variable must be

set in millimeters (MM).
Circular Interpolation Settings

allowedCircularPlanes = undefined; // allow all circular planes

allowedCircularPlanes = 0; // disable all circular planes

allowedCircularPlanes = (1 << PLANE_XY) | (1 << PLANE_ZX); // XY, ZX planes

tolerance = spatial(0.002, MM); // linearization tolerance of .00008 IN

minimumChordLength = spatial(0.01, MM); // minimum linear movement of .0004 IN

minimumCircularRadius = spatial(0.01, MM); // minimum circular radius of .0004 IN

maximumCircularRadius = spatial(1000, MM); // maximum circular radius of 39.37 IN

minimumCircularSweep = toRad(0.01); // minimum angular movement of .01 degrees

maximumCircularSweep = toRad(180); // circular interpolation up to 180 degrees

allowHelicalMoves = true; // enable helical interpolation

allowSpiralMoves = false; // disallow spiral interpolation
Example Circular Interpolation Settings

4.22.2 Circular Interpolation Common Functions

There are built-in functions that are utilized by the onCircular function. These functions return values

used in the onCircular function, determine if the circular record should be linearized, and control the

flow of the onCircular function logic.

Entry Functions 4-115
CAM Post Processor Guide 8/28/19

Function Description

getCircularCenter() Returns the center point of the circle as a Vector.

getCircularChordLength() Returns the delta linear movement of the circular interpolation record.

getCircularNormal() Returns the normal of the circular plane as a Vector. The normal is

flipped if the circular movement is in the clockwise direction. This

follows the righthand plane convention.

getCircularPlane() Returns the plane of the circular interpolation record, PLANE_XY,

PLANE_ZX, or PLANE_YZ. If the return value is -1, then the

circular plane is not a major plane, but is in 3-D space.

getCircularRadius() Returns the end radius of the circular motion.

getCircularStartRadius() Returns the start radius of the circular motion. This will be different

than the end radius for spiral moves.

getCircularSweep() Returns the angular sweep of the circular interpolation record in

radians.

getCurrentPosition() Returns the starting point of the circular move as a Vector.

getHelicalDistance() Returns the distance the third axis will move during helical

interpolation. Returns 0 for a 2-D circular interpolation record.

getHelicalOffset() Returns the distance along the third axis as a Vector. This function is

used when helical interpolation is supported outside one of the three

standard circular planes.

getHelicalPitch() Returns the distance that the third axis travels for a full 360-degree

sweep, i.e. the pitch value of the thread.

getPositionU(u) Returns the point on the circle at u percent along the arc as a Vector.

isFullCircle() Returns true if the angular sweep of the circular motion is 360

degrees.

isHelical() Returns true if the circular interpolation record contains helical

movement. The variable allowHelicalMoves must be set to true for

helical records to be passed to the onCircular function.

isSpiral() Returns true if the circular interpolation record contains spiral

movement (the start and end radii are different). The variable

allowSpiralMoves must be set to true for spiral records to be passed to

the onCircular function.

linearize(tolerance) Linearizes the circular motion by outputting a series of linear moves.
onCircular Common Functions

4.22.3 Helical Interpolation

Helical interpolation is defined as circular interpolation with movement along the third linear axis. The

third linear axis is defined as the axis that is not part of the circular plane, for example, the Z-axis is the

third linear axis for circular interpolation in the XY-plane. The variable allowHelicalMoves must be set

to true for the post processor to support helical interpolation.

Helical interpolation is typically output using the same format as circular interpolation with the addition

of the third axis and optionally a pitch value (incremental distance per 360 degrees) for the third axis.

Entry Functions 4-116
CAM Post Processor Guide 8/28/19

Most stock post processors are already setup to output the third axis with circular interpolation (it won't

be output for a 2-D circular move).

 case PLANE_XY:

 writeBlock(gPlaneModal.format(17), gMotionModal.format(clockwise ? 2 : 3),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 iOutput.format(cx-start.x, 0), jOutput.format(cy-start.y, 0), kOutput.format(getHelicalPitch()),

 feedOutput.format(feed));

 break;
Helical Interpolation with Pitch Output

4.22.4 Spiral Interpolation

Spiral interpolation is defined as circular interpolation that has a different radius at start of the circular

move than the radius at the end of the move. The variable allowSpiralMoves must be set to true for the

post processor to support helical interpolation.

Spiral interpolation when supported on a control is typically specified with a G-code different than the

standard G02/G03 circular interpolation G-codes. Most stock post processors do not support spiral

interpolation.

 if (isSpiral()) {

 var startRadius = getCircularStartRadius();

 var endRadius = getCircularRadius();

 var dr = Math.abs(endRadius - startRadius);

 if (dr > maximumCircularRadiiDifference) { // maximum limit

 if (isHelical()) { // not supported

 linearize(tolerance);

 return;

 }

 switch (getCircularPlane()) {

 case PLANE_XY:

 writeBlock(gPlaneModal.format(17), gMotionModal.format(clockwise ? 2.1 : 3.1),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 iOutput.format(cx - start.x, 0), jOutput.format(cy - start.y, 0), getFeed(feed));

 break;

 case PLANE_ZX:

 writeBlock(gPlaneModal.format(18), gMotionModal.format(clockwise ? 2.1 : 3.1),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 iOutput.format(cx - start.x, 0), kOutput.format(cz - start.z, 0), getFeed(feed));

 break;

 case PLANE_YZ:

 writeBlock(gPlaneModal.format(19), gMotionModal.format(clockwise ? 2.1 : 3.1),

 xOutput.format(x), yOutput.format(y), zOutput.format(z),

 jOutput.format(cy - start.y, 0), kOutput.format(cz - start.z, 0), getFeed(feed));

Entry Functions 4-117
CAM Post Processor Guide 8/28/19

 break;

 default:

 linearize(tolerance);

 }

 return;

 }

 }

Spiral Interpolation Output

4.22.5 3-D Circular Interpolation

3-D circular interpolation is defined as circular interpolation that is not on a standard circular plane (XY,

ZX, YZ).

3-D circular interpolation when supported on a control is typically specified with a G-code different than

the standard G02/G03 circular interpolation G-codes and must contain either the mid-point of the

circular move and/or the normal vector of the circle. Most stock post processors do not support 3-D

circular interpolation.

 default:

 if (properties.allow3DArcs) { // a post property is used to enable support of 3-D circular

 // make sure maximumCircularSweep is well below 360deg

 var ip = getPositionU(0.5); // calculate mid-point of circle

 writeBlock(gMotionModal.format(clockwise ? 2.4 : 3.4), // 3-D circular direction G-codes

 xOutput.format(ip.x), yOutput.format(ip.y), zOutput.format(ip.z), // output mid-point of circle

 getFeed(feed));

 writeBlock(xOutput.format(x), yOutput.format(y), zOutput.format(z)); // output end-point

 } else {

 linearize(tolerance);

 }

 }
3-D Circular Interpolation Output

4.23 onCycle

function onCycle() {

The onCycle function is called once at the beginning of an operation that contains a canned cycle and

can contain code to prepare the machine for the cycle. Mill post processors will typically set the

machining plane here.

function onCycle() {

 writeBlock(gPlaneModal.format(17));

}
Sample onCycle Function

Entry Functions 4-118
CAM Post Processor Guide 8/28/19

Mill/Turn post processors will usually handle the stock transfer sequence in the onCycle function. Logic

for the Mill/Turn post processors will be discussed in a dedicated chapter.

4.24 onCyclePoint

function onCyclePoint(x, y, z) {

Argument Description

x, y, z Hole bottom location.

Canned cycle output is handled in the onCyclePoint function, which includes positioning to the

clearance plane, formatting of the cycle block, calculating the cycle parameters, discerning if the canned

cycle is supported on the machine or should be expanded, and probing cycles which will not be

discussed in this chapter.

The location of the hole bottom for the cycle is passed in as the x, y, z arguments to the onCyclePoint

function. All other parameters are available in the cycle object or through cycle specific function calls.

The flow of outputting canned cycles usually follows the following logic.

1. First hole location in cycle

a. Position to clearance plane

b. Canned cycle is supported on machine

i. Calculate common cycle parameters

ii. Format and output canned cycle

c. Canned cycle is not supported on machine

i. Expand cycle into linear moves

2. 2nd through nth holes

a. Cycle is not expanded

i. Output hole location

b. Cycle is expanded

i. Expand cycle at new location

The actual output of the cycle blocks is handled in a switch block, with a separate case for each of the

supported cycles.

 switch (cycleType) {

 case "drilling":

 writeBlock(

 gRetractModal.format(98), gAbsIncModal.format(90), gCycleModal.format(81),

 getCommonCycle(x, y, z, cycle.retract),

 feedOutput.format(F)

);

 break;
Sample Cycle Formatting Code

Entry Functions 4-119
CAM Post Processor Guide 8/28/19

If a cycle is not supported and needs to be expanded by the post engine, then you can either remove the

entire case block for this cycle and it will be handled in the default block, or you can specifically expand

the cycle. The second method is handy when the canned cycle does not support all of the parameters

available in HSM, for example if a dwell is not supported for a deep drilling cycle on the machine, but

you want to be able to use a dwell.

 case "deep-drilling":

 if (P > 0) { // the machine does not support a dwell code, so expand the cycle

 expandCyclePoint(x, y, z);

 } else {

 writeBlock(

 gRetractModal.format(98), gAbsIncModal.format(90), gCycleModal.format(83),

 getCommonCycle(x, y, z, cycle.retract),

 "Q" + xyzFormat.format(cycle.incrementalDepth),

 feedOutput.format(F)

);

 }

 break;
 Expanding a Cycle When a Feature is not Support on the Machine

The 2nd through the nth locations in a cycle operation are typically output using simple XY moves

without any of the cycle definition codes. Expanded cycles still need to be expanded at these locations.

 } else { // end of isFirstCyclePoint() condition

 if (cycleExpanded) {

 expandCyclePoint(x, y, z);

 } else {

 var _x = xOutput.format(x);

 var _y = yOutput.format(y);

 if (!_x && !_y) {

 xOutput.reset(); // at least one axis is required

 _x = xOutput.format(x);

 }

 writeBlock(_x, _y);

 }

 }
Output the 2nd through nth Cycle Locations

4.24.1 Drilling Cycle Types

The following table contains the drilling (hole making cycles). The cycle type is stored in the cycleType

variable as a text string. The standard G-code used for the cycle is included in the description, where

expanded defines the cycle as usually not being supported on the machine and expanded instead.

cycleType Description

drilling Feed in to depth and rapid out (G81)

Entry Functions 4-120
CAM Post Processor Guide 8/28/19

cycleType Description

counter-boring Feed in to depth, dwell, and rapid out (G82)

chip-breaking Multiple pecks with periodic partial retract to clear chips (G73)

deep-drilling Peck drilling with full retraction at end of each peck (G83)

break-through-drilling Allows for reduced speed and feed before breaking through hole

(expanded)

gun-drilling Guided deep drilling allows for a change in spindle speed for

positioning (expanded)

tapping Feed in to depth, reverse spindle, optional dwell, and feed out.

Automatically determines left or right tapping depending on the tool

selected. (G74/G84)

left-tapping Left-handed tapping (G74)

right-tapping Right-handed tapping (G84)

tapping-with-chip-breaking Tapping with multiple pecks. Automatically determines left or right

tapping depending on the tool selected. (expanded)

reaming Feed in to depth and feed out (G85)

boring Feed in to depth, dwell, and feed out (G86)

stop-boring Feed to depth, stop the spindle, and feed out (G87)

fine-boring Feed to depth, orientate the spindle, shift from wall, and rapid out

(G76)

back-boring Orientate the spindle, rapid to depth, start spindle, shift the tool to

wall, feed up to bore height, orientate spindle, shift from wall, and

rapid out (G77)

circular-pocket-milling Mills out a hole (expanded)

thread-milling Helical thread cutting (expanded)
Types of Drilling Cycles

Any of these cycles can be expanded if the machine control does not support the specific cycle. There

are some caveats, where the post (and machine) must support certain capabilities for the expanded cycle

to run correctly on the machine. The following table lists the commands that must be defined in the

onCommand function to support the expansion of these cycles. It is expected that the machine will

support these features if they are enabled in the post processor.

cycleType Supported onCommand Command

tapping

left-tapping

right-tapping

tapping-with-chip-breaking

COMMAND_SPINDLE_CLOCKWISE

COMMAND_SPINDLE_COUNTERCLOCKWISE

COMMAND_ACTIVATE_SPEED_FEED_SYNCHRONIZATION

COMMAND_DEACTIVATE_SPEED_FEED_SYNCHRONIZATION

stop-boring COMMAND_STOP_SPINDLE

COMMAND_START_SPINDLE

fine-boring

back-boring

COMMAND_STOP_SPINDLE

COMMAND_START_SPINDLE

COMMAND_ORIENTATE_SPINDLE
Required Command Support for Expanded Cycles

Certain cycles also use the following parameters when they are expanded.

Entry Functions 4-121
CAM Post Processor Guide 8/28/19

machineParameters. Description

drillingSafeDistance

Specifies the safety distance above the stock when repositioning into

the hole for the chip-breaking and deep-drilling cycles.

spindleSpeedDwell Dwell in seconds after the spindle speed changes during a cycle.
Parameters for Expanded Cycles

You define the expanded cycle parameters using the following syntaxes.

machineParameters.drillingSafeDistance = toPreciseUnit(0.1, MM);

machineParameters.spindleSpeedDwell = 1.5;
Defining Expanded Cycles Parameters

4.24.2 Cycle parameters

The parameters defined in the cycle operation are passed to the cycle functions using the cycle object.

The following variables are available and are referenced as 'cycle.parameter'.

Parameter Description

accumulatedDepth The depth of the combined cuts before the tool will be fully retracted

during a chip-breaking cycle.

backBoreDistance The cutting distance of a back-boring cycle.

bottom The bottom of the hole.

breakThroughDistance The distance above the hole bottom to switch to the break-through

feedrate and spindle speed during a break-through-drilling cycle.

breakThroughFeedRate The feedrate used when breaking through the hole during a break-

through-drilling cycle.

breakThroughSpindleSpeed The spindle speed used when breaking through the hole during a

break-through-drilling cycle.

chipBreakDistance The distance to retract the tool to break the chip during a chip-

breaking cycle.

clearance Clearance plane where to tool will retract the tool to after drilling a

hole and position to the next hole.

compensation Radius compensation in effect for circular-pocket-milling and thread-

milling cycles. This value can be control, wear, and inverseWear.

compensationShiftOrientation Same as shiftOrientation.

depth The depth of the hole.

diameter The diameter of the hole for circular-pocket-milling and thread-

milling cycles.

direction Either climb or conventional milling for circular-pocket-milling and

thread-milling cycles.

dwell The dwell time in seconds.

dwellDepth The distance above the cut depth at which to dwell, used for gun-

drilling cycles.

feedrate The primary cutting feedrate.

Entry Functions 4-122
CAM Post Processor Guide 8/28/19

Parameter Description

incrementalDepth The incremental pecking depth of the first cut.

incrementalDepthReduction The incremental pecking depth reduction per cut for pecking cycles.

minimumIncrementalDepth The minimum pecking depth of cut for pecking cycles.

numberOfSteps The number of horizontal passes for the thread-milling cycle.

plungeFeedrate The cutting feedrate. The same as feedrate.

plungesPerRetract The number of cuts before the tool will be fully retracted during a

chip-breaking cycle.

postioningFeedrate The feedrate used to position the tool during a gun-drilling cycle.

positioningSpindleSpeed The spindle speed used when positioning the tool during a gun-

drilling cycle.

repeatPass Set to true if the final pass should be repeated for circular-pocket-

milling and thread-milling cycles.

retract The plane where the tool will position to prior to starting the cycle

(feeding into the hole).

retractFeedrate The tool retraction feedrate, used when feeding out of the hole.

shift The distance to shift the tool away from the wall during a fine-boring

and back-boring cycle.

shiftDirection The direction in radians to shift the tool away from the wall during a

fine-boring and back-boring cycle. The shift direction will be PI

radians (180 degrees) from the wall plus this amount.

shiftOrientation The spindle orientation of the tool in radians when shifting the tool

away from the wall during a fine-boring or back-boring cycle.

stepover The horizontal stepover distance for circular-pocket-milling and

thread-milling cycles.

stock The top of the hole.

stopSpindle When set to 1, the spindle will be stopped during

positioning/retracting in a gun-drilling cycle.

threading Either right or left-handed threading for thread-milling cycles.
Cycle Parameters

4.24.3 The Cycle Planes/Heights

The drilling cycles use different heights during the execution of the cycle. These heights are specified in

the Heights tab for the Drilling operation. One thing you should keep in mind is that the names given to

these heights do not match the cycle parameter names in the post processor. The following table gives

the relationship between the HSM height names and the equivalent cycle parameter names.

Operation Heights Tab Cycle Parameter Description

Clearance Height (none) The plane to position to the

first point of the cycle and to

retract the tool to after the

final point of the cycle.

Retract Height cycle.clearance The tool rapids to this plane

from the clearance height

Entry Functions 4-123
CAM Post Processor Guide 8/28/19

Operation Heights Tab Cycle Parameter Description

and will position between the

holes at this height.

Feed Height cycle.retract The tool will feed from this

plane into the hole.

Top Height cycle.stock The top of the hole.

Bottom Height cycle.bottom The bottom of the hole. This

height is the plane where the

tool will drill to and will be

different from the actual

bottom of the hole if the

Drill tip through bottom box

is checked.
Correlation Between Cycle Operation Heights and Cycle Parameters

HSM assumes that the tool will always be retracted to the Retract Height (cycle.clearance) between

holes, you will notice this in the simulation of the cycle in HSM. This is typically handled in the

machine control with a G98 (Retract to clearance plane) code. Of course this code can be different from

machine control to machine control and there are controls that will always retract to the Feed Height

(cycle.retract) at the end of a drilling operation. In this case it is up to the post processor to retract the

tool to the Retract Height.

You can cancel the cycle at the end of the onCyclePoint function and output a tool retract block to take

the tool back up to the Retract Height. When this method is used it is also mandatory that the full cycle

be output for every hole in the operation and not just the first cycle point. Some machines support a

retract plane to be specified with the cancel cycle code, i.e. G80 Rxxx.

function onCyclePoint(x, y, z) {

 // if (isFirstCyclePoint()) {

 if (true) { // output a full cycle block for every hole in the operation

 repositionToCycleClearance(cycle, x, y, z);

...

...

 default:

 expandCyclePoint(x, y, z);

 }

 // retract tool (add at the end of the cycleType switch code)

 gMotionModal.format.reset();

 writeBlock(gCycleModal.format(80), gMotionModal.format(0), zOutput.format(cycle.clearance));

 } else {

 if (cycleExpanded) {
Retracting the Tool to the Retract Plane when Unsupported by Machine Control

Entry Functions 4-124
CAM Post Processor Guide 8/28/19

4.24.4 Common Cycle Functions

There are functions that are commonly used in the onCyclePoint function. The following table lists

these functions.

Function Description

isFirstCyclePoint() Returns true if this is the first point in the cycle operation. It is

usually called to determine whether to output a full cycle block or

just the cycle location.

isLastCyclePoint() Returns true if this is the last point in the cycle operation. This

function is typically used for a lathe threading operation since

HSM sends a single pass to the onCyclePoint function and the full

depth of the thread is required to output a single threading block.

onCycleEnd is used to terminate a drilling cycle, so this function is

not typically used in drilling cycles.

isProbingCycle() Returns true if this is a probing cycle.

repositionToCycleClearance() Moves the tool to the Retract Height plane (cycle.clearance). This

function is typically called prior to outputting a full cycle block.

getCommonCycle(x, y, z, r) Formats the common cycle parameters (X, Y, Z, R) for output.
Common Cycle Functions

These functions are built into the post engine, except the getCommonCycle function, which is contained

in the post processor. It takes the cycle location (x, y, z) and the retract plane/distance (r) as arguments.

Some machines require that the retract value be programmed as a distance from the current location

rather than as an absolute position. There are two ways to accomplish this. You can pass in the distance

as the retract value.

function getCommonCycle(x, y, z, r) {

 forceXYZ();

 return [xOutput.format(x), yOutput.format(y),

 zOutput.format(z),

 "R" + xyzFormat.format(r)];

}

…

 case "drilling":

 writeBlock(

 gRetractModal.format(98), gAbsIncModal.format(90), gCycleModal.format(81),

 getCommonCycle(x, y, z, cycle.retract – cycle.clearance),

 feedOutput.format(F)

);

 break;
Pass Retract Distance to Standard getCommonCycle Function

Or you can pass the clearance plane in to the getCommonCycle function and have it calculate the

distance. This method is typically used in post processors that support subprograms that require a retract

plane while in absolute mode and a distance when in incremental mode.

Entry Functions 4-125
CAM Post Processor Guide 8/28/19

function getCommonCycle(x, y, z, r, c) {

 forceXYZ(); // force xyz on first drill hole of any cycle

 if (incrementalMode) {

 zOutput.format(c);

 return [xOutput.format(x), yOutput.format(y),

 "Z" + xyzFormat.format(z - r),

 "R" + xyzFormat.format(r - c)];

 } else {

 return [xOutput.format(x), yOutput.format(y),

 zOutput.format(z),

 "R" + xyzFormat.format(r)];

 }

}

…

 case "drilling":

 writeBlock(

 gRetractModal.format(98), gCycleModal.format(81),

 getCommonCycle(x, y, z, cycle.retract, cycle.clearance),

 feedOutput.format(F)

);

 break;
Pass Retract and Clearance Heights to getCommonCycle Function

4.24.5 Pitch Output with Tapping Cycles

Tapping cycles can be sometimes be output with a standard FPM feedrate, sometimes with a thread

pitch, and sometimes using the FPR feedrate mode. There are different variables and formats involved

depending on the format used. When using pitch or FPR feedrates you will need to create a format for

this style of feedrate. The format is defined at the top of the post processor with the rest of the format

definitions. Refer to the Format Defintions and Output Variable Definitions sections.

var feedFormat = createFormat({decimals:(unit == MM ? 0 : 1), forceDecimal:true});

var pitchFormat = createFormat({decimals:(unit == MM ? 3 : 4), forceDecimal:true});

…

var feedOutput = createVariable({prefix:"F"}, feedFormat);

var pitchOutput = createVariable({prefix:"F", force:true}, pitchFormat);
Create the Pitch Output Format

In the tapping sections of the onCyclePoint function you will need to assign the correct pitch value to the

output. The tapping pitch is stored in the tool.threadPitch variable.

 case "tapping":

 writeBlock(

 gRetractModal.format(98), gCycleModal.format((84),

 getCommonCycle(x, y, z, cycle.retract),

 (conditional(P > 0, "P" + milliFormat.format(P)),

Entry Functions 4-126
CAM Post Processor Guide 8/28/19

 pitchOutput.format(tool.threadPitch)

);

 forceFeed(); // force the feedrate to be output after a tapping cycle with pitch output

 break;
Output the Thread Pitch on a Tapping Cycle

If the tapping cycle requires that the machine be placed in FPR mode, then you can also calculate the

pitch value by dividing the feedrate by the spindle speed. You will also need to output the FPR code

(G95) with the tapping cycle and reset it at the end of the tapping operation, usually in the onCycleEnd

function.

case "tapping":

 var F = cycle.feedrate / spindleSpeed;

 writeBlock(

 gRetractModal.format(98), gFeedModeModal.format(95), gCycleModal.format((84),

 getCommonCycle(x, y, z, cycle.retract),

 (conditional(P > 0, "P" + milliFormat.format(P)),

 pitchOutput.format(F)

);

 forceFeed(); // force the feedrate to be output after a tapping cycle with pitch output

 break;
Output the Feedrate as FPR on a Tapping Cycle

4.25 onCycleEnd

function onCycleEnd() {

The onCycleEnd function is called after all points in the cycle operation have been processed. The cycle

is cancelled in this function and the feedrate mode (FPM) is reset if it is a tapping operation that uses

FPR feedrates.

function onCycleEnd() {

 if (!cycleExpanded) {

 writeBlock(gCycleModal.format(80));

 // writeBlock(gFeedModeModal.format(94)), gCycleModal.format(80)); // reset FPM mode

 zOutput.reset();

 }

}
onCycleEnd Function

4.26 onRewindMachine

function onRewindMachine(_a, _b, _c) {

Argument Description

_a, _b, _c Rotary axes rewind positions.

Entry Functions 4-127
CAM Post Processor Guide 8/28/19

The onRewindMachine function is used to reposition the rotary axes when a machine limit is reached. It

is described in detail in the Rewinding of the Rotary Axis when Limits are Reached section of this

manual.

4.27 Common Functions

There are functions that are common in most of the generic posts. Some of these functions are used in

conjuction with other post processor functions and are described in the appropriate section of this

manual, for example the formatComment function is described with the onComment function. This

section describes the common functions that are generic in nature and used throughout the post

processor.

4.27.1 writeln

writeln(text);

Arguments Description

text Text to output to the NC file

The writeln function is built into the post engine and is not defined in the post processor. It is used to

output text to the NC file without formatting it. Text can be a quoted text string or a text expression.

writeln is typically used for outputting text strings that don't require formatting, or debug messages.

writeln("%"); // outputs '%'

writeln("Vector = " + new Vector(x, y, z)); // outputs the x, y, z variables in vector format

writeln(""); // outputs a blank line

writeln(formatComment("Load tool " + tool.number + " in spindle");

 // outputs 'Load tool n in spindle' as a comment
Sample writeln Calls

4.27.2 writeBlock

function writeBlock(arguments) {

Arguments Description

arguments Comma separated list of codes/text to output.

The writeBlock function writes a block of codes to the output NC file. It will add a sequence number to

the block, if sequence numbers are enabled and add an optional skip character if this is an optional

operation. A list of formatted codes and/or text strings are passed to the writeBlock function. The code

list is separated by commas, so that each code is passed as an individual argument, which allows for the

codes to be separated by the word separator defined by the setWordSeparator function.

/**

Entry Functions 4-128
CAM Post Processor Guide 8/28/19

 Writes the specified block.

*/

function writeBlock() {

 var text = formatWords(arguments);

 if (!text) {

 return;

 }

 if (properties.showSequenceNumbers) { // add sequence numbers to output blocks

 if (optionalSection) {

 if (text) {

 writeWords("/", "N" + sequenceNumber, text);

 }

 } else {

 writeWords2("N" + sequenceNumber, text);

 }

 sequenceNumber += properties.sequenceNumberIncrement;

 } else { // no sequence numbers

 if (optionalSection) {

 writeWords2("/", text);

 } else {

 writeWords(text);

 }

 }

}
Sample writeBlock Function

writeBlock(gAbsIncModal.format(90), xFormat.format(x), yFormat.format(y));

writeBlock("G28", "X" + xFormat.format(0), "Y" + yFormat.format(0)); // outputs 'G28 X0 Y0'

writeBlock("G28" + "X" + xFormat.format(0) + "Y" + yFormat.format(0)); // outputs 'G28 X0Y0'
Sample writeBlock Calls

The writeBlock function does not usually have to be modified.

4.27.3 toPreciseUnit

toPreciseUnit(value, units);

Arguments Description

value The input value.

units The units that the value is given in, either MM or IN.

The toPreciseUnit function allows you to specify a value in a given units and that value will be returned

in the active units of the input intermediate CNC file. When developing a post processor, it is highly

recommended that any unit based hard coded numbers use the toPreciseUnit function when defining the

number.

Entry Functions 4-129
CAM Post Processor Guide 8/28/19

yAxisMinimum = toPreciseUnit(gotYAxis ? -50.8 : 0, MM); // minimum range for the Y-axis

yAxisMaximum = toPreciseUnit(gotYAxis ? 50.8 : 0, MM); // maximum range for the Y-axis

xAxisMinimum = toPreciseUnit(0, MM); // maximum range for the X-axis (radius mode)
Defining Values using toPreciseUnit

4.27.4 force---

The force functions are used to force the output of the specified axes and/or feedrate the next time they

are supposed to be output, even if it has the same value as the previous value.

Function Description

forceXYZ Forces the output of the linear axes (X, Y, Z) on the next motion block.

forceABC Forces the output of the rotary axes (A, B, C) on the next motion block.

forceFeed Forces the output of the feedrate on the next motion block.

forceAny Forces all axes and the feedrate on the next motion block.
Force Functions

/** Force output of X, Y, and Z on next output. */

function forceXYZ() {

 xOutput.reset();

 yOutput.reset();

 zOutput.reset();

}

/** Force output of A, B, and C on next output. */

function forceABC() {

 aOutput.reset();

 bOutput.reset();

 cOutput.reset();

}

/** Force output of F on next output. */

function forceFeed() {

 currentFeedId = undefined;

 feedOutput.reset();

}

/** Force output of X, Y, Z, A, B, C, and F on next output. */

function forceAny() {

 forceXYZ();

 forceABC();

 forceFeed();

}
Sample Force Functions

Entry Functions 4-130
CAM Post Processor Guide 8/28/19

4.27.5 writeRetract

function writeRetract(arguments) {

Arguments Description

arguments X, Y, and/or Z. Separated by commas when multiple axes are specified.

The writeRetract function is used to retract the Z-axis to its clearance plane and move the X and Y axes

to their home positions.

The writeRetract function can be called with one or more axes to move to their home position. The axes

are specified using their standard names of X, Y, Z, and are separated by commas if multiple axes are

specified in the call to writeRetract.

writeRetract(Z); // move the Z-axis to its home position

writeRetract(X, Y); // move the X and Y axes to their home positions
Sample writeRetract Calls

The writeRetract function is not generic in nature and may have to be changed to match your machine's

requirements. For example, some machines use a G28 to move an axis to its home position, some will

use a G53 with the home position, and some use a standard G00 block.

/** Output block to do safe retract and/or move to home position. */

function writeRetract() {

 // initialize routine

 var _xyzMoved = new Array(false, false, false);

 var _useG28 = properties.useG28; // can be either true or false

 // check syntax of call

 if (arguments.length == 0) {

 error(localize("No axis specified for writeRetract()."));

 return;

 }

 for (var i = 0; i < arguments.length; ++i) {

 if ((arguments[i] < 0) || (arguments[i] > 2)) {

 error(localize("Bad axis specified for writeRetract()."));

 return;

 }

 if (_xyzMoved[arguments[i]]) {

 error(localize("Cannot retract the same axis twice in one line"));

 return;

 }

 _xyzMoved[arguments[i]] = true;

 }

 // special conditions

 if (_useG28 && _xyzMoved[2] && (_xyzMoved[0] || _xyzMoved[1])) { // XY don't use G28

Entry Functions 4-131
CAM Post Processor Guide 8/28/19

 error(localize("You cannot move home in XY & Z in the same block."));

 return;

 }

 if (_xyzMoved[0] || _xyzMoved[1]) {

 _useG28 = false;

 }

 // define home positions

 var _xHome;

 var _yHome;

 var _zHome;

 if (_useG28) {

 _xHome = 0;

 _yHome = 0;

 _zHome = 0;

 } else {

 if (properties.homePositionCenter &&

 hasParameter("part-upper-x") && hasParameter("part-lower-x")) {

 _xHome = (getParameter("part-upper-x") + getParameter("part-lower-x")) / 2;

 } else {

 _xHome = machineConfiguration.hasHomePositionX() ?

machineConfiguration.getHomePositionX() : 0;

 }

 _yHome = machineConfiguration.hasHomePositionY() ?

machineConfiguration.getHomePositionY() : 0;

 _zHome = machineConfiguration.getRetractPlane();

 }

 // format home positions

 var words = []; // store all retracted axes in an array

 for (var i = 0; i < arguments.length; ++i) {

 // define the axes to move

 switch (arguments[i]) {

 case X:

 // special conditions

 if (properties.homePositionCenter) { // output X in standard block by itself if centering

 writeBlock(gMotionModal.format(0), xOutput.format(_xHome));

 _xyzMoved[0] = false;

 break;

 }

 words.push("X" + xyzFormat.format(_xHome));

 break;

 case Y:

 words.push("Y" + xyzFormat.format(_yHome));

 break;

 case Z:

Manual NC Commands 5-132
CAM Post Processor Guide 8/28/19

 words.push("Z" + xyzFormat.format(_zHome));

 retracted = true;

 break;

 }

 }

 // output move to home

 if (words.length > 0) {

 if (_useG28) { // use G28 to move to home position

 gAbsIncModal.reset();

 writeBlock(gFormat.format(28), gAbsIncModal.format(91), words);

 writeBlock(gAbsIncModal.format(90));

 } else { // use G53 to move to home position

 gMotionModal.reset();

 writeBlock(gAbsIncModal.format(90), gFormat.format(53), gMotionModal.format(0), words);

 }

 // force any axes that move to home on next block

 if (_xyzMoved[0]) {

 xOutput.reset();

 }

 if (_xyzMoved[1]) {

 yOutput.reset();

 }

 if (_xyzMoved[2]) {

 zOutput.reset();

 }

 }

}
Sample writeRetract Function

5 Manual NC Commands
Manual NC commands are used to control the behavior of individual operations when there is not a

setting in the operation form for controlling a specific feature of a control. You can use Manual NC

commands to display a message, insert codes into the output NC file, perform an optional stop, define a

setting, etc. The Manual NC menu is accessed from different areas of the ribbon menu depending on the

product you are running.

Manual NC Commands 5-133
CAM Post Processor Guide 8/28/19

Selecting a Manual NC Command in the HSM Products (Fusion 360, Inventor, HSMWorks)

Once you select the Manual NC menu you will see a form displayed that is used to select the type of

Manual NC command that you want to pass to the post processor and optionally the parameter that will

be passed with the command.

Defining a Manual NC Command

If you use a Manual NC command in your part, then it is necessary that the post processor is equipped to

handle this command. Some of the commands are supported by the stock post processors, such as Stop,

Optional stop, and Dwell, while support would have to be added to the post processor to support other

Manual NC commands. If you use a Manual NC command that is not supported by the post, then it will

either generate an error or be ignored. The general rule is it will generate an error if the onCommand

function is called and will be ignored when another function is called.

5.1 onManualNC and expandManualNC

function onManualNC(command, value) {

expandManualNC(command, value)

Arguments Description

command The Manual NC command that invoked the function.

value The value entered with the command.

Manual NC Commands 5-134
CAM Post Processor Guide 8/28/19

The onManualNC function is defined in the post processor and is used to process Manual NC

commands. It accepts the command and the value that is assigned to the command. If the onManualNC

function is not defined in the post processor, then a separate function will be called as listed in the table

below.

The expandManualNC command can also be used to process the Manual NC command using the

separate functions listed in the table. It is typically used as the default condition in the onManualNC

function to process commands where you do not care if they are entered as a Manual NC command or

from an internal call in the post processor.

The following table describes the Manual NC commands along with the function that will be called

when the command is processed when the onManualNC function does not exist or expandManualNC is

called.

Manual NC

Command

Description Command Value Function Called

Comment Operator message COMMAND_COMMENT message onComment

Stop Machine stop COMMAND_STOP onCommand

Optional

Stop

Optional stop COMMAND_OPTIONAL_STOP onCommand

Dwell Dwell COMMAND_DWELL Dwell time

in seconds

onDwell

Tool break

control

Check for tool

breakage

COMMAND_BREAK_CONTROL onCommand

Measure tool Automatically

measure tool

length

COMMAND_TOOL_MEASURE onCommand

Start chip

transport

Start chip

conveyor

COMMAND_START_CHIP_TRANSPORT onCommand

Stop chip

transport

Stop chip

conveyor

COMMAND_STOP_CHIP_TRANSPORT onCommand

Open door Open main door COMMAND_OPEN_DOOR onCommand

Close door Close main door COMMAND_CLOSE_DOOR onCommand

Calibrate Calibration of

machine

COMMAND_CALIBRATE onCommand

Verify Verify integrity of

machine

COMMAND_VERIFY onCommand

Clean Request a cleaning

cycle

COMMAND_CLEAN onCommand

Action User defined

action

COMMAND_ACTION text onParameter

Print

message

Print a message

from the machine

COMMAND_PRINT_MESSAGE message onParameter

Display

message

Display operator

message

COMMAND_DISPLAY_MESSAGE message onParameter

Manual NC Commands 5-135
CAM Post Processor Guide 8/28/19

Manual NC

Command

Description Command Value Function Called

Alarm Create an alarm on

the machine

COMMAND_ALARM onCommand

Alert Request an alert

event on the

machine

COMMAND_ALERT onCommand

Pass through Output literal text

to NC file

COMMAND_PASS_THROUGH text onPassThrough

Force tool

change

Force a tool

change

section.getForceToolChange() (none)

Call program Call a subprogram COMMAND_CALL_PROGRAM text onParameter
Manual NC Commands

5.1.1 Sample onManualNC Function

The onManualNC function is a recent addition to the post processor and will not be found in most

generic post processors. You do not have to define it to process Manual NC commands, and if it is

defined, do not need to process all Manual NC commands in this function. It could be used to process

only the commands where you need to know if they were generated from a CAM Manual NC command

instead of a direct call from within the post processor.

For example, the following onManualNC function definition could be used to process comments entered

using the CAM Manual NC command differently than comments generated from the post processor. It

simply appends the text ‘MSG,’ prior to the comment for a Manual NC Display comment command. All

other Manual NC commands are processed normally.

function onManualNC(command, value) {

 switch (command) {

 case COMMAND_DISPLAY_MESSAGE:

 writeComment("MSG, " + value);

 break;

 default:

 expandManualNC(command, value); // normal processing of Manual NC command

 }

}
Handling of Display Message Command in onManualNC

5.1.2 Delay Processing of Manual NC Commands

Manual NC commands are processed at the placement in the operation tree where they are entered,

which means that they will be processed prior to the call to onSection. Since onSection typically

terminates the previous operation prior to starting the new operation, this might not be the desirable

location to process the Manual NC command.

Manual NC Commands 5-136
CAM Post Processor Guide 8/28/19

The following code examples show how Manual NC commands can be buffered and output at any point

during the operation. You can simply copy the onManualNC and executeManualNC functions into your

post processor and add the appropriate call(s) to executeManualNC where you want to process the

Manual NC commands.

/**

 Buffer Manual NC commands for processing later

*/

var manualNC = [];

function onManualNC(command, value) {

 manualNC.push({command:command, value:value});

}

/**

 Processes the Manual NC commands

 Pass the desired command to process or leave argument list blank to process all buffered

commands

*/

function executeManualNC(command) {

 for (var i = 0; i < manualNC.length; ++i) {

 if (!command || (command == manualNC[i].command)) {

 switch(manualNC[i].command) {

 case COMMAND_DISPLAY_MESSAGE:

 writeComment("MSG, " + manualNC[i].value);

 break;

 default:

 expandManualNC(manualNC[i].command, manualNC[i].value);

 }

 }

 }

 for (var i = 0; i < manualNC.length; ++i) {

 if (!command || (command == manualNC[i].command)) {

 manualNC.splice(i, 1);

 }

 }

}
Manual NC Commands Support Functions

The calls to process the Manual NC commands can be placed anywhere in the post processor. In the

following code example, the COMMAND_DISPLAY_MESSAGE command is processed just before

the tool change block is output and the rest of the Manual NC commands after the tool change block.

 executeManualNC(COMMAND_DISPLAY_MESSAGE); // display Manual NC message

 writeBlock("T" + toolFormat.format(tool.number), mFormat.format(6));

 if (tool.comment) {

 writeComment(tool.comment);

Manual NC Commands 5-137
CAM Post Processor Guide 8/28/19

 }

 executeManualNC(); // process remaining Manual NC commands
Processing of Manual NC Commands in the Desired Location

The following sections give a description of the functions that are called by the Manual NC commands

outside of the onManualNC function and samples on how they are handled in the functions. The

onComment and onDwell functions are described in the Entry Functions chapter, since they are simple

functions and behave in the same manner no matter how they are called.

5.2 onCommand

function onCommand(command) {

Arguments Description

command Command to process.

All Manual NC commands that do not require an associated parameter are passed to the onCommand

function and as you see from the Manual NC Commands table, this entails the majority of the

commands. The onCommand function also handles other commands that are not generated by a Manual

NC command and these are described in the onCommand section in the Entry Functions chapter.

// define commands that output a single M-code

var mapCommand = {

 COMMAND_STOP:0,

 COMMAND_OPTIONAL_STOP:1,

 COMMAND_START_CHIP_TRANSPORT:31,

 COMMAND_STOP_CHIP_TRANSPORT:33

 …

};

function onCommand(command) {

 switch (command) {

 …

 case COMMAND_BREAK_CONTROL: // handle the 'Tool break' command

 if (!toolChecked) { // avoid duplicate COMMAND_BREAK_CONTROL

 onCommand(COMMAND_STOP_SPINDLE);

 onCommand(COMMAND_COOLANT_OFF);

 writeBlock(

 gFormat.format(65),

 "P" + 9853,

 "T" + toolFormat.format(tool.number),

 "B" + xyzFormat.format(0),

 "H" + xyzFormat.format(properties.toolBreakageTolerance)

);

 toolChecked = true;

 }

Manual NC Commands 5-138
CAM Post Processor Guide 8/28/19

 return;

 case COMMAND_TOOL_MEASURE: // ignore tool measurements

 return;

 }

 // handle commands that output a single M-code

 var stringId = getCommandStringId(command);

 var mcode = mapCommand[stringId];

 if (mcode != undefined) {

 writeBlock(mFormat.format(mcode));

 } else {

 onUnsupportedCommand(command);

 }

}

Handling Manual NC Commands in the onCommand Function

5.3 onParameter

function onParameter(name, value) {

Arguments Description

name Parameter name.

value Value stored in the parameter.

The onParameter function handles the Action, Call program, Display message, and Print message

Manual NC commands. It is passed both the name of the parameter being defined and the text string

associated with that parameter. This section will describe how the Action command can be used, since

this is the most commonly used of these commands.

The Action command is typically used to define post processor settings, similar to the post properties

defined at the top of the post processor, except that the settings defined using this command typically

only apply to a single operation. Since the HSM operations are executed in the order that they are

defined in the CAM tree, the Manual NC command will always be processed prior to the operation that

they precede. You can also use the Action command to define a setting so that the command can be

executed within another section of the post, by referencing this setting. You can even define settings

that are typically set in the post properties into your program, so you are not reliant on making sure that

the property is set for a specific program. In this case the Action command would set the value of the

post property based on the input value associated with the command.

It is the onParameter function's responsibility to parse the text string passed as part of the Action

command. The text string could be a value, list of values, command and value, etc. The following table

lists the Action commands that are supported by the sample post processor code used in this section.

These Action commands set variables that will be used elsewhere in the program.

Manual NC Commands 5-139
CAM Post Processor Guide 8/28/19

Action Command Values Description

Smoothing Off, Low, Medium, High Sets the smoothing type

Tolerance .001-.999 Smoothing tolerance

fastToolChange Yes, No Overrides the fastToolChange

post property
 Sample Action Type Manual NC Commands

In this example, the format for entering the Action Manual NC command is to specify the command

followed by the ':' separator which in turn is followed by the value, in the Action text field.

Action Command Format

var smoothingType = 0;

var smoothingTolerance = .001;

function onParameter(name, value) {

 var invalid = false;

 switch (name) {

 case "action":

 var sText1 = String(value).toUpperCase();

 var sText2 = new Array();

 sText2 = sText1.split(":");

 if (sText2.length != 2) {

 error(localize("Invalid action command: ") + value);

 return;

 }

 switch (sText2[0]) {

 case "SMOOTHING":

 smoothingType = parseChoice(sText2[1], "OFF", "LOW", "MEDIUM", "HIGH");

 if (smoothingType == undefined) {

 error(localize("Smoothing type must be Off, Low, Medium, or High"));

 return;

 }

 break;

 case "TOLERANCE":

 smoothingTolerance = parseFloat(sText2[1]);

 if (isNaN(smoothingTolerance) || ((smoothingTolerance < .001) || (smoothingTolerance > .999))) {

Manual NC Commands 5-140
CAM Post Processor Guide 8/28/19

 error(localize("Smoothing tolerance must be a value between .001 and .999"));

 return;

 }

 break;

 case "FASTTOOLCHANGE":

 var fast = parseChoice(sText2[1], "YES", "NO");

 if (fast == undefined) {

 error(localize("fastToolChange must be Yes or No"));

 return;

 }

 properties.fastToolChange = fast;

 break;

 default:

 error(localize("Invalid action parameter: ") + sText2[0] + ":" + sText2[1]);

 return;

 }

 }

}

/* returns the choice specified in a text string compared to a list of choices */

function parseChoice() {

 var stat = undefined;

 for (i = 1; i < arguments.length; i++) {

 if (String(arguments[0]).toUpperCase() == String(arguments[i]).toUpperCase()) {

 if (String(arguments[i]).toUpperCase() == "YES") {

 stat = true;

 } else if (String(arguments[i]).toUpperCase() == "NO") {

 stat = false;

 } else {

 stat = i - 1;

 break;

 }

 }

 }

 return stat;

}
Handling the Action Manual NC Command

To make it easier to use custom Action Manual NC commands you can use the Template capabilities of

HSM. First you will create the Manual NC command that you will turn into a template using the

example in the Action Command Format picture shown above. Once the Manual NC command is

created you will want to give it a meaningful name by renaming it in the Operation Tree.

Manual NC Commands 5-141
CAM Post Processor Guide 8/28/19

Rename the Action Manual NC Command Before Creating Template

Now you will create a template from this Manual NC command by right clicking on the Manual NC

command and selecting Store As Template. You will want to give the template the same name as you

did in the rename operation.

Creating the Manual NC Command Template

The template is now ready to be used in other operations and parts. You do this by right clicking a

Setup or a Folder in the Operations Tree, position the mouse over the Create From Template menu and

select the template you created.

Using the Manual NC Command Template You Created

5.4 onPassThrough

Function onPassThrough (value)

Arguments Description

value Text to be output to the NC file.

The Pass through Manual NC command is used to pass a text string directly to the NC file without any

processing by the post processor. It is similar to editing the NC file and adding a line of text by hand.

The text string could be standard codes (G, M, etc.) or a simple message. Since the post has no control

or knowledge of the codes being output, it is recommended that you use the Pass through command

sparingly and only with codes that cannot be output using another method.

Debugging 6-142
CAM Post Processor Guide 8/28/19

The onPassThrough function handles the Pass through Manual NC command and is passed the text

entered with the command. The following sample code will accept a text string with comma delimiters

that will separate the text into individual lines.

function onPassThrough(text) {

 var commands = String(text).split(",");

 for (text in commands) {

 writeBlock(commands[text]);

 }

}
Output Lines of Codes/Text Separated by Commands Using the Pass through Manual NC Command

Like the Action Manual NC command, you can setup a Template to use with the Pass through command

if you find yourself needing to output the same codes in multiple instances.

6 Debugging

6.1 Overview

The first thing to note when debugging is that there is not an interactive debugger associated with the

Autodesk CAM post processors. This means that all debugging information must be output using

settings within the post and with explicit writes. This section describes different methods you can use

when debugging your post.

You can also use the HSM Post Processor Editor to aid in debugging your program as described in the

Running/Debugging the Post section of this manual

6.2 The dump.cps Post Processor

The dump.cps post processor will process an intermediate CNC file and output a file that contains all of

the information passed from HSM to the post processor. The output file has a file extension of .dmp.

The contents of the dump file will show the settings of all parameter values and will list the entry

functions called along the arguments passed to the function and any settings that apply to that function.

The dump.cps output can be of tremendous value when developing and debugging a post processor.

342: onParameter('dwell', 0)

344: onParameter('incrementalDepth', 0.03937007874015748)

346: onParameter('incrementalDepthReduction', 0.003937007932681737)

348: onParameter('minimumIncrementalDepth', 0.01968503937007874)

350: onParameter('accumulatedDepth', 5)

352: onParameter('chipBreakDistance', 0.004023600105694899)

354: onMovement(MOVEMENT_CUTTING /*cutting*/)

354: onCycle()

 cycleType='chip-breaking'

 cycle.clearance=123456

 cycle.retract=0.19685039370078738

Debugging 6-143
CAM Post Processor Guide 8/28/19

 cycle.stock=0

 cycle.depth=0.810440544068344

 cycle.feedrate=15.748000257597194

 cycle.retractFeedrate=39.370100366787646

 cycle.plungeFeedrate=15.748000257597194

 cycle.dwell=0

 cycle.incrementalDepth=0.03937007874015748

 cycle.incrementalDepthReduction=0.003937007932681737

 cycle.minimumIncrementalDepth=0.01968503937007874

 cycle.accumulatedDepth=5

 cycle.chipBreakDistance=0.004023600105694899

354: onCyclePoint(-1.25, 0.4999999924907534, -0.810440544068344)

355: onCyclePoint(1.25, 0.4999999924907534, -0.810440544068344)

356: onCycleEnd()
Sample dump.cps Output

6.3 Debugging using Post Processor Settings

There are variables available to the developer that control the output of debugging information. This

section contains a description of these variables.

6.3.1 debugMode

debugMode = true;

Setting the debugMode variable to true enables the output of debug information from the debug

command and is typically defined at the start of the post processor.

6.3.2 setWriteInvocations

setWriteInvocations (value);

Arguments Description

value true outputs debug information for the entry functions.

Enabling the setWriteInvocations setting will create debug output in the NC file similar to what is output

using the dump post processor. The debug information contains the entry functions (onParameter,

onSection, etc.) called during post processing and the parameters that they are called with. This

information will be output prior to actually calling the entry function and is labeled using the !DEBUG:

text.

!DEBUG: onRapid(-0.433735, 1.44892, 0.23622)

N190 Z0.2362

!DEBUG: onLinear(-0.433735, 1.44892, 0.0787402, 39.3701)

N195 G1 Z0.0787 F39.37

Debugging 6-144
CAM Post Processor Guide 8/28/19

!DEBUG: onLinear(-0.433735, 1.44892, -0.5, 19.685)

N200 Z-0.5 F19.68
setWriteInvocations Output

6.3.3 setWriteStack

setWriteStack (value);

Arguments Description

value true outputs the call stack that outputs the line to the NC file.

Enabling the setWriteStack setting displays the call stack whenever text is output to the NC file. The

call stack will consist of the !DEBUG: label, the call level, the name of the post processor, and the line

number of the function call (the function name is not included in the output).

!DEBUG: 1 rs274.cps:108

!DEBUG: 2 rs274.cps:919

!DEBUG: 3 rs274.cps:357

N125 M5
setWriteStack Output

…

108: writeWords2("N" + sequenceNumber, arguments);

…

357: onCommand(COMMAND_STOP_SPINDLE);

…

919: writeBlock(mFormat.format(mcode));
Post Processor Contents

6.4 Functions used with Debugging

Functions that can be used to output debug information to the log and NC files include debug, writeln,

and log. Additionally, the writeComment function present in almost all post processors can be used.

The text provided to the debug functions can contain operations and follow the same rules as defining a

string variable in JavaScript. You can also specify vectors or matrixes and these will be properly

formatted for output. For example,

var x = 3;

debug("The value of x is " + x);

For floating point values you may want to create a format that limits the number of digits to right of the

decimal point, as some numbers can be quite long when output.

var numberFormat = createFormat({decimals:4});

var x = 3;

Debugging 6-145
CAM Post Processor Guide 8/28/19

debug("The value of x is " + numberFormat.format(x));

When writing output debug information to the log and/or NC files it is recommended that you precede

the debug text with a fixed string, such as "DEBUG – ", so that it is easily discernable from other output.

6.4.1 debug

debug (text);

Arguments Description

text Outputs text to the log file when debugMode is set to true.

The debug function outputs the provided text message to the log file only when the debugMode variable

is set to true. The text is output exactly as provided, without any designation that the output was

generated by the debug function.

6.4.2 log

log(text);

Arguments Description

text Outputs text to the log file.

The log function outputs the text to the log file. It is similar to the debug function, but does not rely on

the debugMode setting.

6.4.3 writeln

writeln(text);

Arguments Description

text Outputs text to the NC file.

The writeln function outputs the text to the NC file. It is used extensively in post processors to output

valid data to the NC file and not just debug text.

6.4.4 writeComment

writeComment(text);

Arguments Description

text Outputs text to the NC file as a comment.

Multi-Axis Post Processors 7-146
CAM Post Processor Guide 8/28/19

The writeComment function is defined in the post processor and is used to output comments to the

output NC file. It is described in the onComment section of this manual.

6.4.5 writeDebug

Function writeDebug(text);

Arguments Description

text Outputs text to the NC and log files.

The writeDebug function is not typically present in the generic post processors. You can create one to

handle the output of debug information to both the log file and NC file so that if the post processor either

fails or runs successfully you would still see the debug output.

function writeDebug(text) {

 if (true) { // can use the global setting 'debugMode' instead

 writeln("DEBUG - " + text); // can use 'writeComment' instead

 log("DEBUG - " + text); // can use 'debug' instead

 }

}
Sample writeDebug Function

7 Multi-Axis Post Processors

7.1 Adding Basic Multi-Axis Capabilities

Adding multi-axis capabilities to a post processor can be rather straight forward or difficult depending

on the situation. This chapter will cover the basics and the more complex aspects of multi-axis support,

such as adjusting points for a head, inverse time feedrates, etc.

Please note that support for 3+2 operations is not handled here, except for the setup of the machine.

Refer to the Work Plane section in the onSection chapter for a description on how to handle 3+2

operations.

7.1.1 Create the Rotary Axes Formats

The output formats for the rotary axes must first be defined. In existing multi-axis posts and posts that

contain the skeleton structure of multi-axis support these codes should already be defined. You should

add (or verify that they already exist) the following definitions at the top of the post processor in the

same area that all other formats are defined.

var abcFormat = createFormat({decimals:3, forceDecimal:true, scale:DEG});

…

var aOutput = createVariable({prefix:"A"}, abcFormat);

var bOutput = createVariable({prefix:"B"}, abcFormat);

var cOutput = createVariable({prefix:"C"}, abcFormat);
Define the Rotary Axes Formats

Multi-Axis Post Processors 7-147
CAM Post Processor Guide 8/28/19

The scale:DEG parameter specifies that the rotary axes angles will be output in degrees. If you require

the output to be in radians, then omit the scale setting.

7.1.2 Create a Multi-Axis Machine Configuration

The onOpen function should contain the logic to create the machine configuration. The code should be

present in most generic post processors, but it can be easily added to posts that are only setup for 3-axis

capabilities.

if (true) { // note: setup your machine here

 var aAxis = createAxis({coordinate:X, table:false, axis:[1, 0, 0], range:[-360, 360], preference:1});

 var cAxis = createAxis({coordinate:Z, table:false, axis:[0, 0, 1], range:[-360, 360], preference:1});

 machineConfiguration = new MachineConfiguration(aAxis, cAxis);

 setMachineConfiguration(machineConfiguration);

 optimizeMachineAngles2(0); // TCP mode

 }

 if (!machineConfiguration.isMachineCoordinate(0)) {

 aOutput.disable();

 }

 if (!machineConfiguration.isMachineCoordinate(1)) {

 bOutput.disable();

 }

 if (!machineConfiguration.isMachineCoordinate(2)) {

 cOutput.disable();

 }
Define the Machine Configuration

The conditional at the start of the logic must be set to true for the multi-axis configuration to be defined.

You can now customize the rotary axes to match the machine configuration as described below.

First, you will need to use the createAxis function to define all available axes. The createAxis function

accepts the following parameters.

Parameter Description

table Set to true when the rotary axis is a table, or false if it is a head. The default if not

specified is true.

axis Specifies the rotational axis of the rotary axis in the format of a vector, i.e. [0, 0, 1].

This vector does not have to be orthogonal to a major plane, for example it could be [0,

.7017, .7017]. The direction of the rotary axes are based on the righthand rule for tables

and the lefthand rule for heads. You can change direction of the axis by supplying a

vector pointing in the opposite direction, i.e. [0, 0, -1]. This parameter is required.

offset Defines the rotational position of the axis in the format of a coordinate, i.e. [0, 0, 0], but

it is not currently supported by the post processor. Adding support for this offset

position when the rotary configurataion consists of at least one head is discussed in the

Adjusting the Points for Rotary Heads section of this chapter. The default is [0, 0, 0].

Multi-Axis Post Processors 7-148
CAM Post Processor Guide 8/28/19

Parameter Description

coordinate Defines the coordinate of the axis, either X, Y, or Z. You will notice a number used in

most of the generic posts, in this case 0=X, 1=Y, and 2=Z. Either specification is

acceptable input. This parameter is required.

cyclic Defines whether the axis is cyclic (continuous) in nature, in that the output will always

be within the range specified by the range parameter. Cyclic axes will never cause the

onRewindFunction to be called, since they are continuous in nature and do not have

limits. The range applies specifically to output values for this axis. The default is false.

range Defines the upper and lower limits of the rotary axis using the format [lower, upper]. If

the rotary axis is cyclic, then the range sets the limits of the output values for this axis,

if it is not cyclic the range is the actual physical limits of the machine.

preference Specifies the preferred angle direction at the beginning of an operation. -1 = choose the

negative angle, 0 = no preference, and 1 = choose the positive angle. The default is 0.

reset Defines the starting position of the axis for a new operation and when the rotary axes

need to be rewound and reconfigured due to exceeding the limits. 0 = remember the

position from previous section, 1 = reset to 0 at start of operation, 2 = reset to 0 at

automatic rewind, 3 = reset to 0 at start of operation and at automatic rewind. This

parameter is implemented since R42225 of the post engine.

resolution Specifies the resolution in degrees of the rotational actuator. Typically, this will be set

to the number of digits to the right of the decimal as specified in the createFormat call

for the rotary axes. The default is 0.

createAxis Parameters

// 4 axis setup, A rotates around X, direction is positive:

var aAxis = createAxis({coordinate:X, table:true, axis:[1, 0, 0], range:[-360,360], preference:1});

machineConfiguration = new MachineConfiguration(aAxis);

// 4 axis setup, A rotates around X, direction is negative:

var aAxis = createAxis({coordinate:X, table:true, axis:[-1, 0, 0], range:[-360,360], preference:1});

machineConfiguration = new MachineConfiguration(aAxis);

// 5 axis setup, B rotates around Y, C rotates around Z, directions both positive:

var bAxis = createAxis({coordinate:Y, table:true, axis:[0, 1, 0], range:[-360,360], preference:1});

var cAxis = createAxis({coordinate:Z, table:true, axis:[0, 0, 1], range:[-360,360], preference:1});

machineConfiguration = new MachineConfiguration(bAxis, cAxis);
Sample Rotary Configurations

Now you will have to define the machine configuration using the following command.

machineConfiguration = new MachineConfiguration(aAxis, cAxis);
Define Machine Configuration

The order in which the axes are defined in the MachineConfiguration definition is important and must

use the following order.

Multi-Axis Post Processors 7-149
CAM Post Processor Guide 8/28/19

Order Rotary Axis

1 Rotary head slave/rider

2 Rotary head master/carrier

3 Rotary table master/carrier

4 Rotary table slave/rider
machineConfiguration Rotary Axis Order

The setMachineConfiguration(machineConfiguration); statement is required to activate the machine

configuration with the defined rotary axes.

The optimizeMachineAngles2 function determines if the tool endpoint coordinates should be adjusted for

the rotary axes and can have the following values.

Value Description

0 Don't adjust the coordinates for the rotary axes. Used for TCP mode.

1 Adjust the coordinates for the rotary axes. If either of the rotary axes

is a head, then this setting should not be used as there is no internal

support for adjusting the points for a head. Adding this capability to

the post is discussed further in the Adjusting the Points for Rotary

Heads section of this chapter.

2 Adjust the coordinates for rotary tables. No adjustment will be made

for heads.
optimizeMachineAngles2 Settings

The code to disable the output variables for each axis is generic in nature and should be exactly as

shown.

if (!machineConfiguration.isMachineCoordinate(0)) {

 aOutput.disable();

 }

 if (!machineConfiguration.isMachineCoordinate(1)) {

 bOutput.disable();

 }

 if (!machineConfiguration.isMachineCoordinate(2)) {

 cOutput.disable();

 }
Disable the Output of Unused Rotary Axes

7.1.3 Output Initial Rotary Position

The initial rotary axes positions are usually output in the onSection function in the same section of code

that handles the Work Plane. The function getInitialToolAxisABC() is used to obtain the initial rotary

axes positions.

Multi-Axis Post Processors 7-150
CAM Post Processor Guide 8/28/19

 // set working plane after datum shift

 if (currentSection.isMultiAxis()) {

 forceWorkPlane();

 cancelTransformation();

 onCommand(COMMAND_UNLOCK_MULTI_AXIS);

 var abc = currentSection.getInitialToolAxisABC();

 gMotionModal.reset();

 writeBlock(

 gMotionModal.format(0),

 conditional(machineConfiguration.isMachineCoordinate(0), aOutput.format(abc.x)),

 conditional(machineConfiguration.isMachineCoordinate(1), bOutput.format(abc.y)),

 conditional(machineConfiguration.isMachineCoordinate(2), cOutput.format(abc.z))

);

 } else {
Output Initial Rotary Axes Positions

7.1.4 Create the onRapid5D and onLinear5D Functions

Now that you have the machine defined you will need to verify that the onRapid5D and onLinear5D

functions are present. These are the functions that will process the tool path generated by multi-axis

operations. If your post already has these functions defined, then great you should be (almost) ready to

go, if not then add the following functions to your post.

function onRapid5D(_x, _y, _z, _a, _b, _c) {

 if (!currentSection.isOptimizedForMachine()) {

 error(localize("This post configuration has not been customized for 5-axis simultaneous

toolpath."));

 return;

 }

 if (pendingRadiusCompensation >= 0) {

 error(localize("Radius compensation mode cannot be changed at rapid traversal."));

 return;

 }

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(_c);

 if (x || y || z || a || b || c) {

 writeBlock(gMotionModal.format(0), x, y, z, a, b, c);

 feedOutput.reset();

 }

}

Multi-Axis Post Processors 7-151
CAM Post Processor Guide 8/28/19

onRapid Function

function onLinear5D(_x, _y, _z, _a, _b, _c, feed) {

 if (!currentSection.isOptimizedForMachine()) {

 error(localize("This post configuration has not been customized for 5-axis simultaneous

toolpath."));

 return;

 }

 if (pendingRadiusCompensation >= 0) {

 error(localize("Radius compensation cannot be activated/deactivated for 5-axis move."));

 return;

 }

 var x = xOutput.format(_x);

 var y = yOutput.format(_y);

 var z = zOutput.format(_z);

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(_c);

 var f = feedOutput.format(_feed);

 if (x || y || z || a || b || c) {

 writeBlock(gMotionModal.format(1), x, y, z, a, b, c, f);

 } else if (f) {

 if (getNextRecord().isMotion()) { // try not to output feed without motion

 feedOutput.reset(); // force feed on next line

 } else {

 writeBlock(gMotionModal.format(1), f);

 }

 }

}
onLinear5D Function

Both of these functions as presented are basic in nature and the requirements for your machine may

require some modification. For example, the tool endpoint may have to be adjusted for rotary heads or

inverse time feedrates may need to be supported.

7.1.5 Multi-Axis Common Functions

There are functions that are useful when developing a post processor for a multi-axis machine. These

functions are used to determine if the rotary axes are configured, the beginning and ending tool axis or

rotary axes positions for an operation, and control the flow of the multi-axis logic.

Function Description

machineConfiguration.isMultiAxisConfiguration() Returns true if a machine configuration containing rotary

axes has been defined. It is still possible to create output

Multi-Axis Post Processors 7-152
CAM Post Processor Guide 8/28/19

Function Description

for some multi-axis machines if the rotary axes have not
been defined, by outputting the tool axis vector instead of

the rotary axes positions or by using Euler angles for 3+2

operations.

machineConfiguration.getABC(matrix) Returns the rotary axes angles for the provided matrix.
This matrix is usually the Work Plane matrix

(currentSection.workPlane).

machineConfiguration.remapToABC(abc, current) Returns the closest rotary axes angles to the current axes
positions as a Vector. abc is the rotary angles to be

remapped.

machineConfiguration.remapABC(abc) Returns the rotary axes angles within the valid range for

each angle as a Vector..

machineConfiguration.getPreferred(abc) Returns the preferred rotary axes angles given the input

abc angles as a Vector. The preferred angles will be in

the valid range for each angle.

machineConfiguration.isABCSupported(abc) Returns true if the abc angles are within the valid ranges
for the defined rotary axes. Returns false if any of the

angles are outside of their defined range.

section.isOptimizedForMachine() Returns true if an active machine configuration containing

rotary axes is defined for the provided section..

section.isMultiAxis() Returns true if the operation specified by section is a

multi-axis operation.

section.getGlobalInitialToolAxis() Returns the initial tool axis for the provided section as a

Vector. Usually used at the start of an operation using the
currentSection variable.

section.getInitialToolAxisABC() Returns the initial rotary axes angles for the provided

section as a Vector. Usually used at the start of an
operation using the currentSection variable. An error will

be generated if a machine configuration containing rotary

axes has not been defined.

section.getGlobalFinalToolAxis() Returns the final tool axis for the provided section as a
Vector. Usually used at the start of an operation using

getPreviousSection().

section.getFinalToolAxisABC() Returns the final rotary axes angles for the provided

section as a Vector. Usually used at the start of an
operation using getPreviousSection(). An error will be

generated if a machine configuration containing rotary

axes has not been defined.

getCurrentDirection() Returns the current rotary axes angles as a Vector in a

multi-axis operation. It will return the Work Plane

forward vector when in a 3-axis or 3+2 operation.

is3D() Returns true if the entire program is a 3-axis operation
with no multi-axis operations. Returns false if even one

operation is a 3+2 or multi-axis operation.
Multi-Axis Common Functions

Multi-Axis Post Processors 7-153
CAM Post Processor Guide 8/28/19

7.2 Output of Continuous Rotary Axis on a Rotary Scale

There are two different styles that are commonly used for rotary axes output, using a linear scale or a

rotary scale. A linear scale is the more standard case in today's machines and will move on a

progressive scale similar to a linear axis output. For example, a value of 720 degrees will move the axis

two revolutions from 0 degrees. A linear scale is almost always used with a non-continuous axis and

can be used with a continuous rotary axis.

A rotary scale on the other had typically outputs the rotary angle positions between 0 and 360 degrees,

usually with the sign ± specifying the direction. If a sign is not required and the control will always take

the shortest route, then it is pretty straight forward to output the rotary axis on a rotary scale, simply

define it as a cyclic axis with a range of 0 to 360 degrees.

var aAxis = createAxis({coordinate:0, table:true, axis:[1, 0, 0], cyclic:true, range:[0, 360]});
Create Rotary Axis on a Rotary Scale

You may also have to create a blank onRewindMachine function so that the post processor does not

produce an error when the specified range of the axis is exceeded. The new version of the post kernel

will treat a cyclic axis as a continuous axis and will not require rewinds when the specified range is

exceeded. If you are creating a 5-axis post-processor and the range of the non-continuous rotary axis

can be exceeded, then refer to the onRewindMachine section in this chapter on how to handle this

situation.

function onRewindMachine(_a, _b, _c) {

}
Add a Blank onRewindMachine Function

For controls that require a sign to designate the direction the rotary axis will move, you will need to keep

track of the current axis position and include a function to calculate the rotary axis output with the sign.

// collected state

…

var previousABC = new Vector(0, 0, 0)
Define the previousABC Variable

function setWorkPlane (abc) {

…

 previousABC = abc;

}

…

function onSection() {

…

// set working plane after datum shift

if (currentSection.isMultiAxis()) {

…

 previousABC = abc;

Multi-Axis Post Processors 7-154
CAM Post Processor Guide 8/28/19

}

…

function onRapid5D (_x, _y, _z, _a, _b, _c) {

…

 previousABC = new Vector(_a, _b, _c);

}

…

function onLinear5D (_x, _y, _z, _a, _b, _c, feed) {

…

 previousABC = new Vector(_a, _b, _c);

}
Save the Current Rotary Axes Positions

The previousABC variable should only be set in the setWorkPlane function when 3+2 operations are

output as the actual rotary axes positions. If the 3+2 orientation is defined using Euler angles, then the

rotary axis positions need to be calculated and stored in the previousABC variable separately. You can

typically use the machineConfiguration.getABC function to calculate the rotary axes positions from the

work plane.

previousABC = machineConfiguration.getABC(currentSection.workPlane);
Calculate the Rotary Axes from the 3+2 Work Plane

You will now need to add the function that calculates the rotary axes using a directional (signed) value.

/** Calculate angles on rotary scale with signed direction */

function getDirectionalABC(_startAngle, _endAngle, _output) {

 var signedAngle = _endAngle;

 // angles are the same, set the previous output angle to the current angle so it is not output

 if (!abcFormat.areDifferent(_startAngle, _endAngle)) {

 _output.format(_startAngle);

 }

 // calculate the correct direction (sign) based on CLW/CCW direction

 var delta = abcFormat.getResultingValue(_endAngle - _startAngle);

 if (((delta < 0) && (delta > -180.0)) || (delta > 180.0)) {

 if (_endAngle == 0) {

 signedAngle = -Math.PI*2;

 } else {

 signedAngle = -_endAngle;

 }

 }

 return signedAngle;

}
getDirectionalABC Function Calculates Rotary Axis on a Rotary Scale

The final required step is to call the getDirectionalABC function wherever the rotary axis is output. In

the following code, the C-axis is output on a rotary scale.

Multi-Axis Post Processors 7-155
CAM Post Processor Guide 8/28/19

function setWorkPlane(abc) {

…

 writeBlock(

 gMotionModal.format(0),

 conditional(machineConfiguration.isMachineCoordinate(0), aOutput.format(abc.x)),

 conditional(machineConfiguration.isMachineCoordinate(1), bOutput.format(abc.y)),

 conditional(machineConfiguration.isMachineCoordinate(2),

 cOutput.format(getDirectionalABC(previousABC.z, abc.z, cOutput)))

);

…

function onSection() {

….

// set working plane after datum shift

 if (currentSection.isMultiAxis()) {

 forceWorkPlane();

 cancelTransformation();

 onCommand(COMMAND_UNLOCK_MULTI_AXIS);

 var abc = currentSection.getInitialToolAxisABC();

 gMotionModal.reset();

 writeBlock(

 gMotionModal.format(0),

 conditional(machineConfiguration.isMachineCoordinate(0), aOutput.format(abc.x)),

 conditional(machineConfiguration.isMachineCoordinate(1), bOutput.format(abc.y)),

 conditional(machineConfiguration.isMachineCoordinate(2),

 cOutput.format(getDirectionalABC(previousABC.z, abc.z, cOutput))

);

…

function onRapid5D(_x, _y, _z, _a, _b, _c) {

…

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(getDirectionalABC(previousABC.z, _c, cOutput));

…

function onLinear5D(_x, _y, _z, _a, _b, _c, feed) {

…

 var a = aOutput.format(_a);

 var b = bOutput.format(_b);

 var c = cOutput.format(getDirectionalABC(previousABC.z, _c, cOutput));

…
Adding Calls to getDirectionalABC

Similar to setting the previousABC variable in the setWorkPlane function, the call to getDirectionalABC

should only be made when the actual rotary axes positions are output and should not be used when Euler

angles are output.

Multi-Axis Post Processors 7-156
CAM Post Processor Guide 8/28/19

7.3 Adjusting the Points for Rotary Heads

While the post kernel can handle adjusting the tool path for rotary tables, it does not currently have

support for adjusting the tool path for rotary heads. This is a feature that you will need to add yourself

and this section will guide you through it.

First, you will need to make sure that you set the proper tool path adjustments so that the tool tip data is

provided as input to the post processor using the optimizeMachineAngles2 function as described earlier

in this chapter.

optimizeMachineAngles2(0); // Set to 2 if the machine is a head/table configuration without TCP
Setting Tool Tip Input

Now if your machine supports TCP programming, you can skip the rest of this section, as this is all that

is needed (except for outputting the code to enable TCP programming if required by the machine

control).

If your machine consists of a rotary table and a rotary head, then the value passed to

optimizeMachineAngles2 should be 2, so that the tool path is adjusted for the table. The distance to the

pivot point(s) of the head is defined in the offset parameter of the createAxis command.

 var bAxis = createAxis({

 coordinate:1,

 table:false,

 axis:[1, 0, 0],

 offset[0, 0, toPreciseUnit(27.5, MM)], // distance from tool stop to B-axis pivot

 range:[-180.00, 180.00]

 });

 var cAxis = createAxis({

 coordinate:2,

 table:false,

 axis:[0, 0, 1],

 offset:[toPreciseUnit(63.7), 0, toPreciseUnit(15.5)], // distance from B-axis pivot to C-axis pivot

 range:[-360.00, 360.00], cyclic:false

 });

 machineConfiguration = new MachineConfiguration(bAxis, cAxis);
Define Distances to Pivot Point(s) of Rotary Heads

Remember the head slave/rider axis is defined first and then the head master/carrier axis. When the

master and slave heads share a common pivot point, then only the offset for the slave axis needs to be

defined. This offset is defined from the tool stop position to the pivot point. When the pivot points are

different, the master axis offset is defined as the offset from the slave pivot point. Most machines will

use a common pivot point for both rotary axes.

Multi-Axis Post Processors 7-157
CAM Post Processor Guide 8/28/19

Rotary Head Pivot References

One other offset that needs to be addressed is the distance from the tool tip to the tool stop. This value is

either a fixed number if tool length compensation is supported, or is defined by the tool body length.

Tool Length Definition

You will need to add a function that adjusts the points for the rotary head. This is typically

accomplished by translating the tool tip point up the tool axis to the pivot point of the rotary head and

then back down along the spindle axis to the virtual tool tip when the head is at 0 degrees and the control

supports tool length compensation along the spindle axis. If tool length compensation is not supported,

you will need to translate the tool tip to the pivot point of the rotary head and output this position. The

following code is used to calculate the output coordinates for a rotary head and can be included in your

post processor.

Multi-Axis Post Processors 7-158
CAM Post Processor Guide 8/28/19

var TCP_TOOL = 0; // returns tool tip, assumes optimized coordinates as input

var TCP_OPTIMIZED = 1; // returns optimized coordinates, assumes tool tip as input

var OPTIMIZE_NONE = 0; // TCP mode

var OPTIMIZE_HEADS = 1; // optimize for heads only

var useOptimized = OPTIMIZE_HEADS; // set for for non-tcp controls

var usePivotPoint = false; // true outputs head pivot point, use false with tool length compensation

var toolLength = 0; // set to length of tool to be added to pivot distance

function getOptimizedPosition(_xyz, _abc, _which) {

 if (useOptimized == OPTIMIZE_NONE) {

 return _xyz;

 }

 var xyz = new Vector(_xyz.x, _xyz.y, _xyz.z);

 var abc = new Vector(_abc.x, _abc.y, _abc.z);

 var rotaryAxis = new Array(

 machineConfiguration.getAxisU(),

 machineConfiguration.getAxisV(),

 machineConfiguration.getAxisW()

);

 var reverse = _which == TCP_TOOL;

 if (!reverse) {

 xyz = getOptimizedHeads(xyz, abc, rotaryAxis, reverse);

 } else {

 xyz = getOptimizedHeads(xyz, abc, rotaryAxis, reverse);

 }

 return xyz;

}

/** adjust points for heads */

function getOptimizedHeads(_xyz, _abc, _rotaryAxis, _reverse) {

 var xyz = new Vector(_xyz.x, _xyz.y, _xyz.z);

 var first = true;

 var spindleVector = machineConfiguration.getSpindleAxis();

 displacement = new Vector(0, 0, 0);

 var tl = 0;

 if (typeof toolLength == "number") {

 tl = toolLength;

 }

 for (var i = 0; i < 3; ++i) {

 if (_rotaryAxis[i].isEnabled() && _rotaryAxis[i].isHead()) {

 var offset = _rotaryAxis[i].getOffset();

 if (_reverse) {

Multi-Axis Post Processors 7-159
CAM Post Processor Guide 8/28/19

 offset = offset.negated;

 }

 var toolDisplacement = Vector.product(spindleVector, tl);

 if (_reverse) {

 toolDisplacement = toolDisplacement.negated;

 }

 displacement = Vector.sum(displacement, offset);

 displacement = Vector.sum(displacement, toolDisplacement);

 displacement =

_rotaryAxis[i].getAxisRotation(_abc.getCoordinate(_rotaryAxis[i].getCoordinate())).multiply(displac

ement);

 if (!usePivotPoint) {

 displacement = Vector.diff(displacement, offset);

 displacement = Vector.diff(displacement, toolDisplacement);

 }

 tl = 0;

 }

 }

 xyz = Vector.sum(xyz, displacement);

 return xyz;

}
getOptimizedPosition Function Adjusts Points for Rotray Heads

The code is generic in nature and should not have to be modified when inserting it into a post processor,

but there are settings at the top of the code that may have to be changed to match your requirements.

Setting Description

useOptimized Should be set to OPTIMIZE_HEADS to adjust the tool end points for the

head rotations.

usePivotPoint true = the tool locations will be adjusted to be at the pivot point of the

rotary head. false = the tool locations will be adjusted to be at the virtual

tool endpoint (as if the rotary head angles are at 0 degrees). false is used for

machines that support tool length compensation with multi-axis moves,

where the virtual tool position will be output.

toolLength The length of the tool. This can be set to a fixed value when tool length

compensation is used. When the pivot point is output, then this value

should reflect the distance of the tool tip to the tool stop position.

Multi-Axis Post Processors 7-160
CAM Post Processor Guide 8/28/19

Tool Position Output when …

Actual Tool Position TCP is supported

Virtual Tool Position Tool length compensation is supported

Pivot Point Neither TCP nor tool length compensation support for multi-axis moves
Output Location Depends on Machine Requirements

Calls to the getOptimizedPosition need to be inserted wherever the tool position is output, for example

in the onRapid5D and onLinear5D functions. The same calls may have to be added to the 3-axis

functions, output of initial point, onLinear, onRapid, onCyclePoint, and onCircular, depending on if tool

length compensation is supported in the control.

function onRapid5D(_x, _y, _z, _a, _b, _c) {

 if (pendingRadiusCompensation >= 0) {

 error(localize("Radius compensation mode cannot be changed at rapid traversal."));

 return;

 }

 // adjust points for heads

 var xyz = getOptimizedPosition(new Vector(_x, _y, _z), new Vector(_a, _b, _c),

 TCP_OPTIMIZED);

 var x = xOutput.format(xyz.x);

 var y = yOutput.format(xyz.y);

 var z = zOutput.format(xyz.z);

Multi-Axis Post Processors 7-161
CAM Post Processor Guide 8/28/19

Add the Call to getOptimizedPosition to the 5-axis Motion Functions

If the control requires the pivot point locations, then you will need to define the tool length each time a

tool is loaded and add the call to getOptimizedPosition to all functions that output the tool position,

including the onSection (output of initial position), onRapid, onLinear, onCyclePoint, and onCircular

functions.

 toolLength = tool.bodyLength;

 var xyz = getFramePosition(currentSection.getInitialPosition());

 var initialPosition = getOptimizedPosition(xyz, abc, TCP_OPTIMIZED);
Set the Tool Length for Pivot Point Output

7.4 Handling the Singularity Issue in the Post Processor

The post processor kernel handles the problem when the tool axis direction approaches the singularity of

the machine. The singularity is defined as the tool axis orientation that is perpendicular to a rotary axis,

either a table or head. When the tool direction approaches the singularity, you may notice that the rotary

axis can start to swing violently even if there is only a small deviation in the tool axis. If you can

imagine a machine with an A-axis trunnion carrying a C-axis table and the tool axis is 0, sin(.001),

cos(.001). This causes the output rotary positions to be A.001 C0. Now if the rotary axis changes to 0,

sin(.001), cos(.001), a change of less than .002 degrees you will notice that the rotary positions to be

A.001 C90. You can see where a very small directional change in the tool axis (<.002) will cause a 90-

degree change in the C-axis.

The singularity logic in the kernel will massage the tool axis direction to keep the tool within tolerance

and minimize the rotary axis movement in these cases. A safeguard that linearizes the moves around the

singularity has also been implemented. This linearization will add tool locations as necessary to keep

the tool endpoint within tolerance of the part.

Multi-Axis Post Processors 7-162
CAM Post Processor Guide 8/28/19

Tool Direction Approaching the Singularity

There are settings in the post processor that manage how the singularity issue is handled. These settings

are defined using the following command.

machineConfiguration.setSingularity(adjust, method, cone, angle, tolerance, linearizationTolerance)

Variable Description

adjust Set to true to enable singularity optimization within the post processor.

Singularity optimization includes the ability to adjust the tool axis to

minimize singularity issues (large rotary axis movement when the tool axis

approaches perpendicularity to a rotary axis) and the linearization of the

moves around the singularity to keep the tool endpoint within tolerance. The

default is true.

method When set to SINGULARITY_LINEARIZE_OFF it disables the linearization

of the moves to keep the tool endpoint within tolerance of the programmed

tool path around the singularity. SINGULARITY_LINEARIZE_ROTARY

will linearize the moves around the singularity. Additional points are added

to keep the tool within the specified tolerance and is optimized for revolved

movement as if the tool were moving around a cylinder or other revolved

feature. SINGULARITY_LINEARIZE_LINEAR will also add additional

points to keep the tool within tolerance, but will keep the tool endpoint

moving in a straight line. The default is

SINGULARITY_LINEARIZE_ROTARY.

cone Specifies the angular distance that the tool axis vector must be within in

reference to the singularity point before the singularity logic is activated. This

is usually a small value (less than 5 degrees), since the further away the tool

Multi-Axis Post Processors 7-163
CAM Post Processor Guide 8/28/19

Variable Description

axis is from the singularity, the less noticeable the fluctuations in the rotary

axes will be and the less benefit this feature will provide. This parameter is

specified in radians and the default value is .052 (3 degrees).

angle The minimum angular delta movement that the rotary axes must move prior

to considering adjusting the tool axis vector for singularity optimization. This

limit is used to keep from adjusting the tool axis vector when the rotary axes

do not fluctuate greatly. This is typically set to a value of 10 degrees or more.

This parameter is in radians and the default value is .175 (10 degrees).

tolerance The tolerance value used to keep the tool within tolerance when the tool axis

is adjusted to minimize rotary axis movement around the singularity. The

default value is .04mm (.0015in).

linearizationTolerance The tolerance value to use when additional points are added to keep the tool

endpoint within tolerance of the programmed move when the tool axis is near

the singularity. The default value is .04mm (.0015in).

The default settings are valid for most tool paths, but this command allows for some tweaking in special

cases where you want to fine tune the output.

7.5 Rewinding of the Rotary Axes when Limits are Reached

The post processor kernel will select the starting angles of the rotary axes based on the best possible

solution to avoid rewind situations when one of the rotary axes crosses its limits. This is accomplished

by scanning the entire operation to see if a rewind of the rotary axes is required due to limit violations

and if so adjusting the starting angles of the rotary axes to see if the rewind can be avoided. If a solution

to avoid the rewind cannot be found, then the solution that produces the most rotary movement prior to

requiring a rewind will be used.

The best possible solution for the rotary axes is always selected at the start of an operation and when a

rewind is required due to a rotary axis crossing the limits, the tool will always stop on the exact limit of

the machine, eliminating previous scenarios where a valid solution for the rewinding of the rotary axes

could not always be found.

When a rewind is required there is a group of functions that can be added to the custom post processor to

handle the actual rewinding of the affected rotary axis. This code can be easily copied into your custom

post processor and modified to suit your needs with just a little bit of effort.

One setting that is very important when defining a rotary axis is the cyclic parameter in the call to

createAxis. Where in older versions of the post kernel you would set the cyclic parameter to enable the

ability to rewind the rotary axes when the limits were reached, cyclic is now considered synonymous

with continuous, meaning that this axis has no limits and will not be considered when determining if the

rotary axes have to be repositioned to stay within limits. The range specifier used in conjunction with a

cyclic axis defines the output limits of a rotary axis, for example specifying a range of [0,360] will cause

all output angles for this axis to be output between 0 and 360 degrees. The range for a non-cyclic axis

defines the actual physical limits of that axis on the machine and are used to determine when a rewind is

Multi-Axis Post Processors 7-164
CAM Post Processor Guide 8/28/19

required. Please note that the physical limits of the machine may be a numeric limit of the control

instead of a physical limit, such as 9999.9999.

Another important setting is the reset parameter, which allows you to define the starting angle at the

start of an operation and after a rewind of the axes has occurred. By default, the post engine will use the

ending angle of the previous multi-axis operation. Some controls allow for the rotary axis encoder to be

reset so that the stored angle is reset to be within the 0-360 degrees without unwinding the axis. In this

case you will want to issue the proper codes to reset the axis encoder, for example G28 C0, and specify

reset:3 when you create the axis.

Now on to how you can implement the onRewindMachine capabilities in your post. First, copy the code

from a post processor that contains these functions, such as the haas umc-750.cps post processor. All

the lines between and including the following lines should be copied.

// Start of onRewindMachine logic

…

// End of onRewindMachine logic
Copy this Code to your Custom Post Processor

This code is generic in nature and will work with all machine configurations; table/table, head/head, and

head/table. Because of this most of the functions included in this code will not have to be modified by

you. The rest of this section describes the changes that you may have to make to customize the rewind

logic for your machine.

The safeRetractDistance value is added to the distance that the tool will be retracted out of the part prior

to rewinding the rotary axis. The tool will be retracted past the stock of the part plus this value.

properties = {

…

 safeRetractDistance: 0.0 // distance to add to retract distance when rewinding rotary axes

}
Add safeRetractDistance to Properties Table

The variables at the top of the rewind code determine if rewinds are supported, the feedrates, and stock

expansion.

var performRewinds = false; // enables the onRewindMachine logic

var safeRetractFeed = (unit == IN) ? 20 : 500;

var safePlungeFeed = (unit == IN) ? 10 : 250;

var stockAllowance = (unit == IN) ? 0.1 : 2.5;

Variable Description

performRewinds When set to false an error will be generated when a rewind of a rotary axis

is required. Setting it to true will enable the rewind logic to be executed.

safeRetractFeed Specifies the feedrate to retract the tool prior to rewinding the rotary axis.

Multi-Axis Post Processors 7-165
CAM Post Processor Guide 8/28/19

safePlungeFeed Specifies the feedrate to plunge the tool back into the part after rewinding

the rotary axis.

stockAllowance The tool will retract past the defined stock by default. You can expand

the defined stock on all sides by the stockAllowance value.
Variables that Control Tool Retraction

The first function that is unique for different machines is the onRewindMachineEntry function, which is

used to either override or supplement the standard rewind logic. It will simply return false when the

standard rewind logic of retracting the tool, repositioning the rotary axes, and repositioning the tool is

desired. Code can be added to this function for controls that just require the encoder to be reset or to

output the new rotary axis position when the control will automatically track the tool with the rotary axis

movement. The following example resets the C-axis encoder on a Hass machine when it is currently at

a multiple of 360 degrees and the B-axis does not change.

/** Allow user to override the onRewind logic. */

function onRewindMachineEntry(_a, _b, _c) {

 // reset the rotary encoder if supported to avoid large rewind

 if (properties.rewindCAxisEncoder) {

 if ((abcFormat.getResultingValue(_c) == 0) && !abcFormat.areDifferent(getCurrentDirection().y,

_b)) {

 writeBlock(gAbsIncModal.format(91), gFormat.format(28), "C" + abcFormat.format(0));

 writeBlock(gAbsIncModal.format(90));

 return true;

 }

 }

 return false;

}
Sample Code to Reset Encoder Instead of Rewinding C-axis

Returning a value of true designates that the onRewindMachineEntry function performed all necessary

actions to reposition the rotary axes and the retract/reposition/plunge sequence will not be performed.

Returning false will process the retract/reposition/plunge sequence normally.

The moveToSafeRetractPosition function controls the move to a safe position after the tool is retracted

from the part and before the rotary axes are repositioned. It will typically move to the home position in

Z and optionally in X and Y using a G28 or G53 style block. You should find similar code to retract the

tool when positioning the rotary axes for a 3+2 operation and in the onClose function, which positions

the tool at the end of the program. You should use the same logic found in these areas for the

moveToSafeRetractPosition function.

/** Retract to safe position before indexing rotaries. */

function moveToSafeRetractPosition(retracted)

 if (!retracted) {

 writeBlock(gFormat.format(28), gAbsIncModal.format(91), "Z" +

 xyzFormat.format(machineConfiguration.getRetractPlane())); // retract

 writeBlock(gAbsIncModal.format(90));

Multi-Axis Post Processors 7-166
CAM Post Processor Guide 8/28/19

 zOutput.reset();

 }

}
Move to a Safe Position Prior to Repositioning Rotary Axes

The returnFromSafeRetractPosition function controls the move back to the position of the tool at the

original retract location past the stock. This function is called after the rotary axes are repositioned.

/** Return from safe position after indexing rotaries. */

function returnFromSafeRetractPosition(position) {

 forceXYZ();

 xOutput.reset();

 yOutput.reset();

 zOutput.disable();

 onRapid(position.x, position.y, position.z);

 zOutput.enable();

 onRapid(position.x, position.y, position.z);

}
Return from Safe Position after Repositioning Rotary Axes

These should be all the areas of the rewind code that should be modified, the rest is generic for all

machine configurations.

7.6 Multi-Axis Feedrates

During multi-axis contouring moves, the machine control will typically expect the feedrate numbers to

be either in Inverse Time or some form of Degrees Per Minute. Inverse Time feedrates are simply the

inverse of the time that the move takes, i.e. 1 / movetime. If your control supports both Inverse Time

and Degrees Per Minute feedrates, it is recommended that you use Inverse Time as this is the most

accurate. Please note that if your machine supports TCP (Tool Control Point) programming, then it

probably supports direct Feed Per Minute (FPM) feedrates during multi-axis contouring moves and does

not require either Inverse Time or DPM feedrates.

To implement multi-axis feedrate support into your post, you will first need to copy the code from a post

processor that already supports this feature, such as the haas trunnion.cps post processor. All the lines

between and including the following lines should be copied.

// Start of multi-axis feedrate logic

…

// End of multi-axis feedrate logic
Copy this Code to your Custom Post Processor

This code is generic in nature and will work with all machine configurations; table/table, head/head, and

head/table. Because of this most of the functions included in this code will not have to be modified by

you, though you will have to modify other sections of the post processor to fully implement this feedrate

logic.

Multi-Axis Post Processors 7-167
CAM Post Processor Guide 8/28/19

One capability of the multi-axis feedrate calculation is that it considers the actual tool tip movement in

reference to the rotary axes movement and not just the straight-line movement along the programmed

tool tip, creating more accurate multi-axis feedrates. In the following picture the move along the arc

caused by the movement of the rotary axis (green arc) is used in the calculation instead of the straight-

line move generated by HSM (blue line).

Actual Tool Path on Machine is Used in Feedrate Calculations

The rest of this section describes the changes that you may have to make to customize the multi-axis

feedrate logic for your machine.

If Inverse Time feedrates are supported you will need to create the inverseTimeOutput variable at the top

of the post processor code and if the accuracy of the Inverse Time feedrates is different than the standard

FPM feedrate you will also need to create a new format to associate with it.

var inverseFormat = createFormat({decimals:4, forceDecimal:true});

…

var inverseTimeOutput = createVariable({prefix:"F", force:true}, feedFormat);
Create inverseTimeOutput Variable

The variables at the top of the multi-axis feedrate code define variables used in the calculation of Inverse

Time and DPM feedrates.

var dpmBPW = (unit == IN) ? 0.1 : 1.0; // ratio of rotary accuracy to linear for DPM calculations

var inverseTimeUnits = 1.0; // 1.0 = minutes, 60.0 = seconds

Multi-Axis Post Processors 7-168
CAM Post Processor Guide 8/28/19

var maxInverseTime = 45000; // maximum value to output for Inverse Time feeds

var maxDPM = 9999.99; // maximum value to output for DPM feeds

var useInverseTimeFeed = true; // use 1/T feeds

var previousDPMFeed = 0; // previously output DPM feed

var dpmFeedToler = 0.5; // tolerance to determine when the DPM feed has changed

// var previousABC = new Vector(0, 0, 0); // previous ABC if used in post, don't define if not used

var forceOptimized = undefined; // used to override optimized-for-angles points (XZC-mode)

Variable Description

dpmBPW Defines the pulse weight ratio for the rotary axes when DPM feedrates are

output as a combination of linear and rotary movements. The pulse

weight is a scale factor based on the rotary axes accuracy compared to the

linear axes accuracy. For example, it should be set to .1 when the linear

axes are output on .0001 increments and the rotary axes on .001

increments.

inverseTimeUnits Defines the unit of time for Inverse Time feedrates. Specify 1.0 for

minutes or 60.0 for seconds.

maxInverseTime Specifies the maximum value that can be output for Inverse Time

feedrates.

maxDPM The maximum value that can be output for DPM feedrates.

useInverseTimeFeed Can be set to true for Inverse Time feedrates or false for DPM feedrates

when only one of the formats is supported.

previousDPMFeed Used to determine when the DPM feedrate should be output. Should not

be changed.

dpmFeedToler Determines when the DPM feedrate should be output. The calculated

feedrate number will not be output unless it changes by more than this

value.

previousABC Some post processors require that the previous ABC output positions be

maintained inside the post processor, for example post processors that

output the rotary axes on a rotary scale with the sign of the value

specifying the direction of rotation. In this case, previousABC should be

defined. If the post processor does not maintain this variable, then it

should be commented out, otherwise it will adversely affect the

calculations of the multi-axis feedrates.

forceOptimized This variable is used for Mill/Turn machines where multi-axis

programming uses the points adjusted for the C-axis and XZC

programming uses the input tool endpoint positions. It is set to false when

calculating the XZC mode positions and to undefined for all other

positions. It must be set to undefined when created.

headOffset For machines that have a rotary head, the headOffset variable can be

defined. It contains the fixed pivot length combined with the tool length

and is used to calculate the length of the move. Basically, it is the

distance from the tool tip to the pivot point of the head. This variable is

typically defined in post processors that support rotary heads.
Variables that Control Multi-Axis Feedrate Calculations

Multi-Axis Post Processors 7-169
CAM Post Processor Guide 8/28/19

getMultiaxisFeed is the controlling function used for multi-axis feedrate calculations. It retrieves the

total move length and determines whether to use Inverse Time or DPM feedrates.

/** Calculate the multi-axis feedrate number. */

function getMultiaxisFeed(_x, _y, _z, _a, _b, _c, feed) {

 var f = {frn:0, fmode:0};

 if (feed <= 0) {

 error(localize("Feedrate is less than or equal to 0."));

 return f;

 }

 var length = getMoveLength(_x, _y, _z, _a, _b, _c);

 if (useInverseTimeFeed) { // inverse time

 f.frn = inverseTimeOutput.format(getInverseTime(length.tool, feed));

 f.fmode = 93;

 feedOutput.reset();

 } else { // degrees per minute

 f.frn = feedOutput.format(getFeedDPM(length, feed));

 f.fmode = 94;

 }

 return f;

}
getMultiAxisFeed Function

The object returned from the getMoveLength function returns the values that may be needed by different

post processors to calculate the Inverse Time and DPM feedrates. The following table lists the variables

calculated and returned by the getMoveLength function.

Variable Description

abc Delta movement for each rotary axis, returned as a Vector.

abcLength Combined rotary delta movement.

radius Calculated radius for each rotary axis, returned as a Vector.

tool Calculated tool endpoint movement along the actual tool path.

xyz Delta movement for each linear axis, returned as a Vector.

xyzLength Combined linear delta movement.
Move LengthVariables

If your machine supports both Inverse Time and DPM feedrates, you can add the useInverseTime

variable to the property table at the top of the post processor and allow the user to choose the multi-axis

feedrate format.

properties = {

…

 useInverseTime: true // true = inverse time feedrates, false = degrees per minute feedrates

}

Multi-Axis Post Processors 7-170
CAM Post Processor Guide 8/28/19

…

propertyDefinitions = {

…

 useInverseTime: {title:"Use inverse time feedrates",

 description:"'Yes' enables inverse time feedrates, 'No' outputs DPM feedrates.", type:"boolean"}
Optionally Add useInverseTime to Properties Table

The only other function that you may need to modify in the included code is the getFeedDPM function

that calculates the Degrees Per Minute feedrates. It contains calculations for standard DPM feedrates

and combination FPM/DPM feedrates based on the combined movement of the linear and rotary axes,

sometimes referred to as Pulses Per Minute. There are some controls that use a proprietary calculation

for DPM feedrates, such as the Fadal control. In this case there is a defined block where you can add the

control specific calculation.

/** Calculate the DPM feedrate number. */

function getFeedDPM(_moveLength, _feed) {

 if ((_feed == 0) || (_moveLength.tool < 0.0001) || (toDeg(_moveLength.abcLength) < 0.0005)) {

 previousDPMFeed = 0;

 return _feed;

 }

 var moveTime = _moveLength.tool / _feed;

 if (moveTime == 0) {

 previousDPMFeed = 0;

 return _feed;

 }

 var dpmFeed;

 var tcp = !getOptimizedMode() && (forceOptimized == undefined); // false for rotary heads

 if (tcp) { // TCP mode is supported, output feed as FPM

 dpmFeed = _feed;

 } else if (false) { // set to 'true' for standard DPM

 dpmFeed = Math.min(toDeg(_moveLength.abcLength) / moveTime, maxDPM);

 if (Math.abs(dpmFeed - previousDPMFeed) < dpmFeedToler) {

 dpmFeed = previousDPMFeed;

 }

 } else if (false) { // set to 'true' for combination FPM/DPM

 var length = Math.sqrt(Math.pow(_moveLength.xyzLength, 2.0) +

 Math.pow((toDeg(_moveLength.abcLength) * dpmBPW), 2.0));

 dpmFeed = Math.min((length / moveTime), maxDPM);

 if (Math.abs(dpmFeed - previousDPMFeed) < dpmFeedToler) {

 dpmFeed = previousDPMFeed;

 }

 } else { // machine specific calculation

 var length = Math.sqrt(Math.pow(_moveLength.tool, 2.0) +

 Math.pow(_moveLength.xyzLength, 2.0));

 dpmFeed = toDeg(_moveLength.abcLength) / (length / _feed);

 if (Math.abs(dpmFeed - previousDPMFeed) < dpmFeedToler) {

Multi-Axis Post Processors 7-171
CAM Post Processor Guide 8/28/19

 dpmFeed = previousDPMFeed;

 }

 }

 previousDPMFeed = dpmFeed;

 return dpmFeed;

}
Standard DPM Calculation in getFeedDPM Function

Now there are other areas of the post processor that need to be changed to support these feedrate modes.

First, the onLinear5D function must have support added to call the function and output the correct

feedrate codes.

function onLinear5D(_x, _y, _z, _a, _b, _c, feed) {

 …

 // get feedrate number

 var f = {frn:0, fmode:0};

 if (a || b || c) {

 f = getMultiaxisFeed(_x, _y, _z, _a, _b, _c, feed);

 if (useInverseTimeFeed) {

 f.frn = inverseTimeOutput.format(f.frn);

 } else {

 f.frn = feedOutput.format(f.frn);

 }

 } else {

 f.frn = feedOutput.format(feed);

 f.fmode = 94;

 }

 if (x || y || z || a || b || c) {

 writeBlock(gFeedModeModal.format(f.fmode), gMotionModal.format(1), x, y, z, a, b, c, f.frn);

 } else if (f.frn) {

 if (getNextRecord().isMotion()) { // try not to output feed without motion

 feedOutput.reset(); // force feed on next line

 } else {

 writeBlock(gFeedModeModal.format(f.fmode), gMotionModal.format(1), f.frn);

 }
onLinear5D Required Changes

You will need to reset the feedrate mode to FPM either at the end of the multi-axis operation or on a

standard 3-axis move. It is much easier to do this at the end of the section, otherwise you would have to

modify all instances that output feedrates, such as in onLinear, onCircular, onCycle, etc.

function onSectionEnd() {

…

 if (currentSection.isMultiAxis()) {

 writeBlock(gFeedModeModal.format(94)); // inverse time feed off

 }

Adding Support for Probing 8-172
CAM Post Processor Guide 8/28/19

Reset FPM Mode in onSectionEnd

 writeBlock(gFeedModeModal.format(94), gMotionModal.format(1), gFormat.format(40), x, y, z,

f);
Optionally Reset FPM Mode in All Output Blocks with Feedrates

8 Adding Support for Probing
Fusion and HSM have support for multiple styles of probing operations, including WCS Probing,

Geometry Probing, and Surface Inspection. While the probing capabilities are supported by many of the

library post processors, they are not supported by all of them and custom post processors may not have

these capabilities. This chapter discusses the required changes to a post processor to support the probing

operations.

8.1 WCS Probing

WCS Probing is defined as probing operations that are used to probe the part for the purpose of defining

a Work Coordinate System. While all Autodesk CAM products support WCS Probing, you will find

these operations in a different area of the interface for each of the products.

 Fusion 360 Inventor HSM Inventor HSM

You can check the post processor you are working with to see if it supports WCS Probing. The easiest

method is to try to run a probing operation against the post, the post will fail if probing is not supported.

You may see an error message complaining about the spindle speed being out of range (probe operations

do not turn on the spindle) or a message that states that the probing cycle must be handled in the post

processor.

Error: Spindle speed out of range.

Error at line: 735

Error in operation: 'WCS Probe1'

Failed while processing onSection() for record 261.

Spindle Speed Error Message

Adding Support for Probing 8-173
CAM Post Processor Guide 8/28/19

Error: The probe cycle 'probing-xy-outer-corner' is machine specific and must always be handled in

the post configuration.

Error in operation: 'WCS Probe1'

Failed while processing onCycle() for record 280.

Machine Specific Error Message

If you receive either of these messages, then probing is not supported in your post processor and you

will need to add it.

8.1.1 Probing Operations

There is a sample model available for testing the probing logic in a post processor. In Fusion it is

contained int the CAM Samples/Post Processor folder. This model contains a part designed for testing

probing cycles using the available WCS Probing operations.

Sample Probing Part

One thing you will notice when creating a probing operation is that interface is intelligent enough to

only give you the probing operation types that apply to the type of geometry selected. For example, if

you select a planar face perpendicular to the X-axis, then the only operations available to you are the X

surface and Angle along X-axis operations.

Adding Support for Probing 8-174
CAM Post Processor Guide 8/28/19

Intelligent Probe Selection

The WCS Probing operations are considered a canned cycle in the post processor and therefore are

output in the onCyclePoint function, with the probe type being stored in the cycleType variable. The

following table lists the available probing operations. You should note that probing cycles cannot be

expanded and must be handled in the post processor, either by performing the cycle or by giving an

error.

cycleType Description

probing-X Probes a wall perpendicular to the X-axis.

probing-Y Probes a wall perpendicular to the Y-axis.

probing-Z Probes a wall perpendicular to the Z-axis.

probing-x-wall Probes a wall thickness in the X-axis

probing-y-wall Probes a wall thickness in the Y-axis

probing-x-channel Probes the open distance between two walls in the X-axis

probing-y-channel Probes the open distance between two walls in the Y-axis

probing-x-channel-with-island Probes the open distance between two walls with an

island between the walls in the X-axis

probing-y-channel-with-island Probes the open distance between two walls with an

island between the walls in the Y-axis

probing-xy-circular-boss Probes the outer wall of a circular boss

probing-xy-circular-hole Probes the inner wall of a circular hole

probing-xy-circular-hole-with-island Probes the inner wall of a circular hole with an island in

the hole

probing-xy-rectangular-boss Probes the outer walls of a rectangular protrusion

probing-xy-rectangular-hole Probes the inner walls of a rectangular hole

probing-xy-rectangular-hole-with-island Probes the inner walls of a rectangular hole with an island

in the hole

probing-xy-inner-corner Probes an inner corner. Modifies the origin and rotation

of the part.

Adding Support for Probing 8-175
CAM Post Processor Guide 8/28/19

cycleType Description

probing-xy-outer-corner Probes an outer corner. Modifies the origin and rotation

of the part.

probing-x-plane-angle Probes a wall at an angle to the X-axis. Modifies the

rotation of the part.

probing-y-plane-angle Probes a wall at an angle to the Y-axis. Modifies the

rotation of the part.
Probing Cycles

The parameters defined in the WCS Probing operation are passed to the cycle functions using the cycle

object. The following variables are available and are referenced as ‘cycle.parameter’.

Parameter Description

approach1 The distance from the contact point at which the probe starts to

approach the part.

approach2 The distance from the contact point at which the probe starts to

approach the second face of a multi-face operation.

depth The position along the probe axis to touch the part.

probeClearance The height the probe rapids to on its way to the start of the probing

and the position it returns to after the probing operation is finished.

probeOvertravel The maximum distance the probe can move beyond the expected

contact point and still record a measurement.

probeSpacing The probe spacing between points on the selected face for Angle style

probing.

retract The height to retract the probe to at the programmed feedrate.

width1 The width of the boss or hole being probed.

width2 The width of the secondary walls (Y-axis) of a rectangular boss or

hole being probed.
Probing Parameters

8.1.2 Adding the Core Probing Logic

Adding WCS Probing support requires the main logic to output the probing cycle, supporting functions,

and some logic added to the main sections of the post processor. You should first open a post processor

that contains support for probing before starting to add probing to your post processor, since the logic

and most of the code will remain the same. Most of the generic post processors use Renishaw style

probing Macros (Fanuc, Haas, etc.), but there are also controls that support probing without the use of

these Macros, such as the Datron, Heidenhain, and Siemens controls. Be sure to start with closest match

to the machine you are creating a post processor for. The examples used in this chapter use the code for

the Renishaw style probing Macros.

The following functions support angular probing and may have to be modified to match the

requirements of your control. The code shown is for a Fanuc style control. They should be added prior

to the onCyclePoint function.

Adding Support for Probing 8-176
CAM Post Processor Guide 8/28/19

/**

 Determine if angular probing is supported.

*/

function getAngularProbingMode() {

 if (machineConfiguration.isMultiAxisConfiguration()) {

 if (machineConfiguration.isMachineCoordinate(2)) {

 return ANGLE_PROBE_USE_CAXIS;

 } else {

 return ANGLE_PROBE_NOT_SUPPORTED;

 }

 } else {

 return ANGLE_PROBE_USE_ROTATION;

 }

}

/**

 Output rotation offset based on angular probing cycle.

*/

function setProbingAngle() {

 if ((g68RotationMode == 1) || (g68RotationMode == 2)) { // Rotate coordinate system for Angle

Probing

 if (!properties.useG54x4) {

 gRotationModal.reset();

 gAbsIncModal.reset();

 writeBlock(

 gRotationModal.format(68), gAbsIncModal.format(90),

 (g68RotationMode == 1) ? "X0" : "X[#135]",

 (g68RotationMode == 1) ? "Y0" : "Y[#136]",

 "Z0", "I0.0", "J0.0", "K1.0", "R[#139]"

);

 g68RotationMode = 3;

 } else if (angularProbingMode != ANGLE_PROBE_NOT_SUPPORTED) {

 writeBlock("#26010=#135");

 writeBlock("#26011=#136");

 writeBlock("#26012=#137");

 writeBlock("#26015=#139");

 writeBlock(gFormat.format(54.4), "P1");

 g68RotationMode = 0;

 } else {

 error(localize("Angular probing is not supported for this machine configuration."));

 return;

 }

 }

}
Probing Parameters

Adding Support for Probing 8-177
CAM Post Processor Guide 8/28/19

The core logic for probing is in the onCycle function. The first part of the code to copy into your post is

at the top of the onCyclePoint function and defines the WCS code to adjust for the probing operation.

 var probeWorkOffsetCode;

 if (isProbeOperation()) {

 if (!useMultiAxisFeatures && !isSameDirection(currentSection.workPlane.forward, new Vector(0,

0, 1)) && (!cycle.probeMode || (cycle.probeMode == 0))) {

 error(localize("Updating WCS / work offset using probing is only supported by the CNC in the

WCS frame."));

 return;

 }

 var workOffset = probeOutputWorkOffset ? probeOutputWorkOffset : currentWorkOffset;

 if (workOffset > 99) {

 error(localize("Work offset is out of range."));

 return;

 } else if (workOffset > 6) {

 probeWorkOffsetCode = probe100Format.format(workOffset - 6 + 100);

 } else {

 probeWorkOffsetCode = workOffset + "."; // G54->G59

 }

 }
Setting the WCS code

The highlighted code is controller specific and may have to be modified to match your control. It will

be similar to the WCS logic in the onSection function.

The code that outputs the probing calls is usually located after the drilling cycle logic in the main switch

block. Copy all code that contains the case statements for probing operations.

 switch (cycleType) {

 case “drilling”:

 …

 case “probing-x”: // copy from this line to before the “default” case

 …

 default:

Calling the Probe Macro

 Now add the conditional to ignore subsequent cycle locations. Probing cycles only contain a single

location.

 // 2nd through nth cycle point

 } else {

 if (isProbeOperation()) {

 // do nothing

Adding Support for Probing 8-178
CAM Post Processor Guide 8/28/19

 } else if (cycleExpanded) {
Ignore Subsequent Cycle Locations

Add the following code to the onCycleEnd function to end the probing operation.

function onCycleEnd() {

 if (isProbeOperation()) {

 writeBlock(probeCode.code.format(probeCode.value), "P" + 9810,

zOutput.format(cycle.clearance)); // protected retract move

 writeBlock(probeCode.code.format(probeCode.value), "P" + 9833); // spin the probe off

 setProbingAngle(); // define rotation of part

 // we can move in rapid from retract optionally

 } else {

 …

}

8.1.3 Adding the Supporting Probing Logic

There various locations that contain support logic for probing operations in the post processor. Some of

this code may already be in your post processor. If the post uses a special format for the output of the

Probe WCS code, then you will need to add this format at the top of the post.

var probe100Format = createFormat({decimals:3, zeropad:true, width:3, forceDecimal:true});
May be Required for Formatting the Probe WCS Code

Add the following definitions to the fixed settings section at the top of the post processor.

var ANGLE_PROBE_NOT_SUPPORTED = 0;

var ANGLE_PROBE_USE_ROTATION = 1;

var ANGLE_PROBE_USE_CAXIS = 2;
Add to Fixed Settings Section

Add the following variables to the collected state section at the top of the post processor.

var g68RotationMode = 0;

var angularProbingMode;
Add to Collected State Section

The following function and variable definition should be added prior to the onParameter function. The

onParameter function should also have the shown conditional added if it is not there.

function isProbeOperation() {

 return hasParameter("operation-strategy") && (getParameter("operation-strategy") ==

"probe");

}

Adding Support for Probing 8-179
CAM Post Processor Guide 8/28/19

var probeOutputWorkOffset = 1;

function onParameter(name, value) {

 if (name == "probe-output-work-offset") {

 probeOutputWorkOffset = (value > 0) ? value : 1;

 }
Add Prior to and to onParameter Function

The following code needs to be added to the onSection function.

 if (!isProbeOperation() &&

 (insertToolCall ||

 forceSpindleSpeed ||

 isFirstSection() ||

 (rpmFormat.areDifferent(spindleSpeed, sOutput.getCurrent())) ||

 (tool.clockwise != getPreviousSection().getTool().clockwise))) {

 forceSpindleSpeed = false;
Don’t Output Spindle Speed with a Probe Tool

 if (isProbeOperation()) {

 if (g68RotationMode != 0) {

 error(localize("You cannot probe while G68 Rotation is in effect."));

 return;

 }

 angularProbingMode = getAngularProbingMode();

 writeBlock(probeCode.code.format(probeCode.value), "P" + 9832); // spin the probe on

 }

 // define subprogram

 subprogramDefine(initialPosition, abc, retracted, zIsOutput);

 retracted = false;

}
Add at the end of the onSection Function

Coolant should be disabled during probing operations, so make sure that the following conditional is in

the getCoolantCodes function.

function getCoolantCodes(coolant) {

 var multipleCoolantBlocks = new Array(); // create a formatted array to be passed into the outputted

line

 if (!coolants) {

 error(localize("Coolants have not been defined."));

 }

 if (isProbeOperation()) { // avoid coolant output for probing

 coolant = COOLANT_OFF;

Adding Support for Probing 8-180
CAM Post Processor Guide 8/28/19

 }
Disable Coolant for Probing Operations

8.2 Geometry Probing

Geometry Probing behaves similarly to WCS Probing. It is used to measure geometric features on the

part during machining. The measured geometric features are checked against specified tolerances for

size and position. Based on the result, you can update the tool wear, or instruct the machine to stop

machining if the feature is out of tolerance. Geometry Probing is initiated using the Probe Geometry

operation listed in the PROBING menu.

Geometry Probing Operation

Like in WCS Probing, the parameters defined in the Geometry Probing operation are passed to the cycle

functions using the cycle object. These are in addition to the parameters defined for WCS Probing,

which are also available in Geometry Probing. The following variables are available and are referenced

as ‘cycle.parameter’.

Parameter Description

angleAskewAction Set to “stop-message” when Askew Action is enabled.

incrementComponent Increments the output component number when printing the results.

outOfPositionAction Set to “stop-message” when Out of Position Action is enabled.

printResults Measurements will be printed to a file on the controller when enabled.

toleranceAngle Used to determine if angular measurement is within tolerance.

tolerancePosition Used to determine if the positional measurement is within tolerance.

toleranceSize Used to determine if the size of the feature (hole, boss) is within

tolerance.

toolDiameterOffset Defines the tool diameter offset register used to machine the feature.

toolLengthOffset Defines the tool length offset register used to machine the feature.

toolWearErrorCorrection The percentage of the deviation to update the tool wear by.

toolWearUpdateThreshold The minimum deviation that will trigger a tool wear update.

updateToolWear Enabled when tool wear compensation should be activated on the

controller.

wrongSizeAction Set to “stop-message” when Wrong Size Action is enabled.
Geometry Probing Parameters

To add Geometry Probing to your post you will first need to implement WCS Probing. After this there

are only minor changes required to support Geometry Probing. First make sure that the

isProbeOperation looks like the following.

Adding Support for Probing 8-181
CAM Post Processor Guide 8/28/19

function isProbeOperation() {

 return hasParameter("operation-strategy") && ((getParameter("operation-strategy") == "probe" ||

getParameter("operation-strategy") == "probe_geometry"));

}
isProbeOperation Function with Geometry Probing Support

In the onCyclePoint function you will need to modify the probing cycles so that they call the

getProbingArguments function, which formats the parameter output for both WCS and Geometry

Probing.

case "probing-x":

 forceXYZ();

 // move slowly always from clearance not retract

 writeBlock(gFormat.format(65), "P" + 9810, zOutput.format(z - cycle.depth), getFeed(F)); //

protected positioning move

 writeBlock(

 gFormat.format(65), "P" + 9811,

 "X" + xyzFormat.format(x + approach(cycle.approach1) * (cycle.probeClearance +

tool.diameter/2)),

 "Q" + xyzFormat.format(cycle.probeOvertravel),

 getProbingArguments(cycle, probeWorkOffsetCode) // "S" + probeWorkOffsetCode

);

 break;
Add Call to getProbingArguments to All Probing Operations

Now you will need to add the getProbingArguments function prior to the onCycleEnd function.

function getProbingArguments(cycle, probeWorkOffsetCode) {

 var probeWCS = hasParameter("operation-strategy") && (getParameter("operation-strategy") ==

"probe");

 return [

 (cycle.angleAskewAction == "stop-message" ? "B" + xyzFormat.format(cycle.toleranceAngle ?

cycle.toleranceAngle : 0) : undefined),

 ((cycle.updateToolWear && cycle.toolWearErrorCorrection < 100) ? "F" +

xyzFormat.format(cycle.toolWearErrorCorrection ? cycle.toolWearErrorCorrection / 100 : 100) :

undefined),

 (cycle.wrongSizeAction == "stop-message" ? "H" + xyzFormat.format(cycle.toleranceSize ?

cycle.toleranceSize : 0) : undefined),

 (cycle.outOfPositionAction == "stop-message" ? "M" + xyzFormat.format(cycle.tolerancePosition

? cycle.tolerancePosition : 0) : undefined),

 ((cycle.updateToolWear && cycleType == "probing-z") ? "T" +

xyzFormat.format(cycle.toolLengthOffset) : undefined),

 ((cycle.updateToolWear && cycleType !== "probing-z") ? "T" +

xyzFormat.format(cycle.toolDiameterOffset) : undefined),

Adding Support for Probing 8-182
CAM Post Processor Guide 8/28/19

 (cycle.updateToolWear ? "V" + xyzFormat.format(cycle.toolWearUpdateThreshold ?

cycle.toolWearUpdateThreshold : 0) : undefined),

 (cycle.printResults ? "W" + xyzFormat.format(1 + cycle.incrementComponent) : undefined), // 1

for advance feature, 2 for reset feature count and advance component number. first reported result in a

program should use W2.

 conditional(probeWorkOffsetCode && probeWCS, "S" + probeWorkOffsetCode)

];

}
getProbingArguments Function Formats Probing Parameters for Output

8.3 Inspect Surface

The Inspect Surface operation creates a probing strategy that specifies contact points across the surfaces

of the model to be measured by a probe while the part is still on the machine tool. The results can then

be imported and compared against the model to identify if the manufactured part is in or out of

tolerance.

Inspection streamlines the manufacturing process by letting you identify problem areas and decide on

any rework needed earlier in the process. It also helps to reduce the need to move parts between the

machine tool and a measuring device.

Surface Inspection is initiated using the Inspect Surface operation listed in the PROBING menu.

Inspect Surface Operation

If you wish to use the Inspect Surface operations, you will need a post processor that will allow you to

output and run these inspection paths on your machine. You can either use one of the generic Inspection

post processors available on the Fusion/HSM Post Library, or modify your current milling post which is

already set up for your machine to add in the inspection functionality.

The Inspection post processors will have the inspection or inspect surface suffix appended to the name

of the post processor. These are the only post processors that support Inspect Surface operations. You

will need to use one of these generic posts as a source for adding the inspection code to your post

processor.

8.3.1 Inspect Surface Operations

Inspect Surface operations differ from the other probing operations, in that you will select points on the

face of the part to inspect instead of individual features of the part.

Adding Support for Probing 8-183
CAM Post Processor Guide 8/28/19

Surface Inspect Interface

The Surface Inspect operations are considered a cycle in the post processor and therefore call the

onCyclePoint function, though they are expanded in the inspectionCycleInspect function. The standard

cycleType variable to define the cycle type is not set for Surface Inspect operations, but rather the

isInspectionOperation function is used to determine if it is a Surface Inspection cycle. This is further

explained in the Adding the Supporting Surface Inspect Logic section. Unlike other cycles that pass a

single point to the onCyclePoint function, the Surface Inspect cycle will contain the following 3 points

per cycle location, with each location generating a separate and subsequent call to onCyclePoint.

Location How to determine Description

First isFirstCyclePoint() Safe move to approach inspection location

Second (default) Inspection move

Third isLastCyclePoint() Retract move
Three Points per Inspection Location

The parameters defined in the Inspect Surface operation are passed to the cycle functions using either

the cycle object or through section parameters (getParameter). These parameters are not described here,

since they are handled in the core Surface Inspect functions that are copied from an existing inspection

post processor.

8.3.2 Adding the Core Inspect Surface Logic

Adding Surface Inspect support requires the main logic to be copied directly from a post processor that

already supports inspection, and logic added to the main sections of the post processor. You should first

open a post processor that contains support for inspection before starting to add Inspect Surface support

to your post processor, since the logic and most of the code will remain the same. As of this writing, the

following post processors have support for inspection, notice that all of them are named with the inspect

surface or inspection suffix.

Adding Support for Probing 8-184
CAM Post Processor Guide 8/28/19

Post Library Name Filename

Fanuc Inspection fanuc inspection.cps

HAAS (pre-NGC) Inspect Surface haas inspect surface.cps

HAAS – Next Generation Control Inspect Surface haas next generation inspect surface.cps

Heidenhain Inspection heidenhain inspection.cps

Siemens SINUMERIK 840D Inspection siemens 840D inspection.cps
Post Processors that Support Surface Inspect Operations

You can also search the online Post Library for Fusion 360 and Autodesk HSM to see if any other post

processors have been added with inspection capabilities.

Search for Posts that Support Surface Inspect Operations

The main code for Inspect Surface logic is located at the end of the post processor. You will need to

copy from the definition of description located after the onClose or onTerminate function to the end of

the file and add this code to the end of your post processor.

description = "HAAS - Next Generation Control Inspect Surface";

minimumRevision = 42251;

longDescription = "Generic post for the HAAS Next Generation control with inspect surface

capabilities.";
Copy From this Code to the End of the File for Core Surface Inspect Logic

8.3.3 Adding the Supporting Inspect Surface Logic

There are a number of locations that contain support logic for Inspect Surface operations in the post

processor. You can refer to any of the generic post processors that support Inspect Surface operations

for an example on where this code is implemented.

Add the following code at the end of the onOpen function.

 // Probing Surface Inspection

 if (typeof inspectionWriteVariables == "function") {

https://cam.autodesk.com/hsmposts?p

Adding Support for Probing 8-185
CAM Post Processor Guide 8/28/19

 inspectionWriteVariables();

 }
Add to the End of the onOpen Function

For multi-axis machines it is important that an actual machine configuration is defined and is not reliant

on 3+2 plane codes and/or IJK output. Please refer to the Multi-Axis Post Processors section for a

description on implementing multi-axis support to your post processor.

If your post processor does not have the isInspectionOperation function defined, then add it after the

isProbeOperation function.

function isInspectionOperation(section) {

 return section.hasParameter("operation-strategy") && (section.getParameter("operation-strategy")

== "inspectSurface");

}
Add isInspectionOperation

The following code needs to be added to the onSection function.

 if (!isInspectionOperation(currentSection) && !isProbeOperation() &&

 (insertToolCall ||

 forceSpindleSpeed ||

 isFirstSection() ||

 (rpmFormat.areDifferent(spindleSpeed, sOutput.getCurrent())) ||

 (tool.clockwise != getPreviousSection().getTool().clockwise))) {

 forceSpindleSpeed = false;
Don’t Output Spindle Speed with a Probe Tool

At the end of the onSection function, but before any subprograms are defined, add the following code.

 if (isInspectionOperation(currentSection) && (typeof inspectionProcessSectionStart == "function"))

{

 inspectionProcessSectionStart();

 }
Initialize the Surface Inspect Operation

At the top of the onCyclePoint function add in the following code.

 if (isInspectionOperation(currentSection) && (typeof inspectionCycleInspect == "function")) {

 inspectionCycleInspect(cycle, x, y, z);

 return;

 }
Call the Controlling Surface Inspect Function

At the start of the onSectionEnd function add the following code.

 if (typeof inspectionProcessSectionEnd == "function") {

 inspectionProcessSectionEnd();

Adding Support for Probing 8-186
CAM Post Processor Guide 8/28/19

 }
Finalize the Surface Inspect Operation

At the end of the onClose function, but before any subprogram statements, add the following code.

 if (typeof inspectionProgramEnd == "function") {

 inspectionProgramEnd();

 }
Finalize the Surface Inspect Program

Index

Index 187
Autodesk CAM Post Processor Guide 8/28/19

?

? conditional.................................... 3-51

3

3+2 operations................................. 3-44

A

accuracy .. 6-144

Action ... 5-138

allowedCircularPlanes 4-60, 4-113

allowHelicalMoves ... 4-60, 4-113, 4-115

allowSpiralMoves4-60, 4-113, 4-115, 4-116

areDifferent 4-67

argument ... 3-57

array 3-39, 3-41, 3-57, 3-58

Array Object Functions 3-41

Autodesk Fusion 360 Post Processor Utility 2-13

B

Benchmark parts 1-7

Benchmark Parts 2-29, 2-33

bookmarks 2-23, 2-24

booleans .. 3-39

break 3-50, 3-55

Built-in properties 4-63

C

CAM partners 1-6

capabilities 4-60

case ... 3-50

case sensitive................................... 3-34

certificationLevel 4-60

circular interpolation 4-112, 4-113

circular plane........................ 4-60, 4-113

clearance plane 4-130

clockwise 4-112

closestABC 4-87

CNC Handbook 1-1

collected state 4-71

comment 3-35, 4-97

conditional function 3-52

conditional statements 3-48

continue .. 3-56

coolant .. 4-83

createAxis..................... 4-72, 4-90, 7-147

createFormat 4-66, 4-68, 7-146

createIncrementalVariable 4-66, 4-68

createModal 4-66, 4-68

createReferenceVariable 4-66, 4-68

createVariable 4-66, 4-68, 7-146

cycle4-117, 4-118

Cycle parameters 4-121

Cycle planes/heights 4-122

cycleType4-119, 8-174

cyclic7-153, 7-163

D

Date .. 4-74

debug 2-29, 4-127, 6-143, 6-145

Debugging 6-142

debugMode6-143, 6-145

default .. 3-50

degrees ... 7-147

Degrees Per Minute7-166, 7-170

description 4-60

Diameter Offset 4-81

disable 4-69, 4-72, 7-149

do/while.. 3-55

download a post 1-3

dump.cps4-100, 6-142

E

editor .. 2-13

else ... 3-49

entry function 6-142

Entry functions 4-58

Euler Angle Order4-90

Euler angles 4-87

executeManualNC 5-136

expanded cycles4-119, 4-120

expandManualNC 5-133

expression............ 3-47, 3-51, 3-54, 3-58

expression operators 3-48

extension .. 4-60

Index

Index 188
Autodesk CAM Post Processor Guide 8/28/19

F

Feedrate .. 4-112

fixed settings 4-70, 4-71

for 3-53, 3-54, 3-55

Force tool change 4-81

forceABC 4-129

forceAny 4-129

forceFeed 4-129

forceXYZ 4-129

format 4-66, 4-67, 4-68, 4-69

formatComment 4-98

function 3-36, 3-51, 3-56, 3-57

G

G-code 1-1, 4-68

Geometry Probing 8-180

getABC .. 7-154

getCircularCenter 4-115, 7-151

getCircularChordLength 4-115

getCircularNormal 4-115

getCircularPlane 4-115

getCircularRadius.......................... 4-115

getCircularStartRadius 4-115

getCircularSweep 4-115

getCommonCycle.......................... 4-124

getCoolantCodes 4-84

getCurrent 4-69

getCurrentDirection....................... 7-152

getCurrentPosition 4-115

getDirectionalABC 7-154

getError ... 4-67

getEuler2 4-89, 4-90

getFeedDPM 7-170

getFramePosition 4-92

getGlobalParameter 4-101

getGlobalZRange 4-75

getHeaderDate 4-74

getHeaderVersion............................ 4-74

getHelicalDistance 4-115

getHelicalOffset 4-115

getHelicalPitch 4-115, 4-116

getInitialToolAxisABC 7-149

getMinimumValue 4-67

getMultiaxisFeed 7-169

getNextSection 4-93

getNumberOfSections . 4-75, 4-76, 4-100

getNumberOfTools 4-75

getOrientation 4-87

getParameter 4-100

getPositionU4-115, 4-117

getRemainingOrientation 4-87

getResultingValue 3-53, 4-67

getSection 4-75, 4-76, 4-100

getTool ... 4-76

getToolTypeName 4-76

getWorkPlaneMachineABC ... 4-87, 4-89

Global Section 4-59

global variable 3-36, 4-60, 4-71

H

hasGlobalParameter 4-101

hasParameter 4-100

headOffset 7-168

helical interpolation 4-115

helical move 4-60

high feedrate4-105, 4-108

highFeedMapping 4-60

highFeedrate 4-60

home position 4-130

HSM Post Processor Editor 3-35

I

if 3-48, 3-51

incremental 4-68

indentation 3-35

Initial Position 4-81, 4-92

insertToolCall 4-78, 4-81, 4-93

Inspect Surface 8-182

intermediate file 1-1

Inverse Time 7-166

inverseTimeOutput 7-167

isFirstCyclePoint 4-124

isFirstSection 4-78

isFullCircle 4-115

isHelical 4-115

isLastCyclePoint 4-124

isLastSection 4-93

isMultiAxis 4-89

isMultiAxisConfiguration 4-89

isProbingCycle 4-124

isSignificant.................................... 4-67

isSpiral ... 4-115

Index

Index 189
Autodesk CAM Post Processor Guide 8/28/19

J

JavaScript.. 3-34

K

kernel settings 4-60

L

Laser ... 1-11

legal .. 4-60

Length Offset 4-81

linear scale 7-153

linearize .. 4-115

local variables 3-36

log ... 6-145

longDescription 4-74

looping statements 3-53

M

machineConfiguration4-72, 4-74, 4-75, 7-147

machining plane 4-117

Manual NC command4-72, 4-94, 4-96, 4-97, 4-

99, 4-100

Manual NC Command................... 5-132

mapToWCS 4-60

mapWorkOrigin 4-61

Math Object 3-37

Matrix ... 3-44

Matrix Object Assignments 3-44

Matrix Object Attributes.................. 3-45

Matrix Object Functions 3-46

matrixes .. 6-144

maximumCircularRadius 4-61, 4-113

maximumCircularSweep4-61, 4-72, 4-114

M-code .. 4-68

mill/turn .. 1-10

milling .. 1-9

minimumChordLength 4-61, 4-114

minimumCircularRadius 4-61, 4-114

minimumCircularSweep 4-61, 4-114

minimumRevision 4-61

model origin 4-60

movement 4-104

moveToSafeRetractPosition 7-165

multi-axis 3-44, 4-108, 4-110, 7-146

multi-axis .. 4-72

Multi-Axis Feedrates 7-166

N

NC file extension 4-60

next tool ... 4-82

number 3-36, 3-58

Number Objects 3-37

O

object 3-41, 3-58

onCircular...........................4-103, 4-112

onClose 4-94, 4-95

onCommand4-96, 4-103, 4-120, 5-134, 5-137

onComment4-97, 5-134, 6-146

onCycle .. 4-117

onCycleEnd 4-126

onCyclePoint 4-118, 8-174, 8-181

onDwell 4-99, 5-134

onExpandedLinear 4-108

onExpandedRapid 4-106

onImpliedCommand 4-95, 4-97

onLinear 4-103, 4-105, 4-107, 4-108

onLinear5D4-110, 7-151

onManualNC 5-133, 5-135, 5-136

onMovement 4-104

onOpen ... 4-71

onOrientateSpindle 4-103

onParameter ... 4-99, 4-102, 5-134, 5-138

onPassThrough5-135, 5-141

onRadiusCompensation 4-103

onRapid 4-103, 4-105, 4-106

onRapid5D4-108, 7-150

onRewindMachine ... 4-127, 7-153, 7-164

onRewindMachineEntry 7-165

onSection 4-77, 4-94

onSectionEnd 4-78, 4-79, 4-93, 4-94

onSpindleSpeed 4-102

onTerminate 4-95

Operation Comment 4-79

Operation Notes4-80

operators ... 3-47

optimizeMachineAngles2 ...7-147, 7-149

optional skip 4-127

output units 4-61

Index

Index 190
Autodesk CAM Post Processor Guide 8/28/19

P

parametric feedrates 4-105

pendingRadiusCompensation 4-104

permittedCommentChars 4-98

Plasma .. 1-11

post kernel....................................... 3-36

Post Library 1-2

post processor 2-29

post processor documentation 3-34

Post Processor Forum 1-2, 1-6

Post Processor Ideas 1-2, 1-6

Post Properties 2-30

preloadTool 4-82

previousABC 7-153

Probing 1-12, 8-172, 8-180, 8-182

program comment 4-73

program name 4-61, 4-73

programComment 4-73

programName 4-73

programNameIsInteger 4-61, 4-73

properties .. 4-63

Property Table 3-41, 4-62, 4-70, 4-71

propertyDefinitions 4-63

R

radians 3-38, 7-147

radius compensation4-105, 4-107, 4-110, 4-112

range 7-153, 7-163

rapid .. 4-60

real value .. 3-53

repositionToCycleClearance.......... 4-124

reset .. 4-70

retract 4-79, 4-92

return 3-56, 3-57

returnFromSafeRetractPosition 7-166

rotary axes................. 4-87, 7-146, 7-149

rotary scale 7-153

rotary table position......................... 4-88

S

safeRetractDistance 7-164

seed post ... 1-6

sequence number 4-127

setCoolant 4-84

setPrefix .. 4-70

setSingularity 7-162

setSuffix ... 4-70

setup ... 4-102

setWordSeparator 4-72, 4-127

setWorkPlane 4-90, 7-154

setWriteInvocations 2-30, 6-143

setWriteStack 2-30, 6-144

singularity..................................... 7-161

spindle codes 4-83

spiral interpolation4-115, 4-116

spiral move 4-60

stock transfer 1-11

string 3-35, 3-38, 3-58

String Object Functions 3-39

switch 3-49, 3-55

T

tapping cycles 4-125

TCP 4-87, 7-166

Template 5-140

toDeg .. 3-38

tolerance4-61, 4-114, 4-115

tool axis 4-108, 4-110, 7-161

Tool change 4-81

tool length offset 4-92

toPreciseUnit 4-128

toRad .. 3-38

try/catch.. 3-52

typeof ... 3-51

U

undefined .. 3-36

unit .. 4-72, 4-77

useMultiAxisFeatures 4-87

User Settings 2-16

V

validate ... 3-52

var .. 3-36

variable 3-36, 3-47, 3-51, 3-57

Vector... 3-42

Vector Attributes 3-42

Vector Object Functions 3-43

vectors .. 6-144

Visual Studio Code 2-13

Index

Index 191
Autodesk CAM Post Processor Guide 8/28/19

W

Waterjet .. 1-11

WCS 4-60, 4-93

WCS Probing 8-172

while ... 3-54

Work Coordinate System4-78, 4-84, 8-172

Work Plane4-61, 4-78, 4-87, 4-89, 4-93, 7-149

workOffset 4-77

writeBlock 4-127

writeComment ... 4-74, 4-76, 4-98, 6-145

writeDebug 6-146

writeln4-127, 6-145

writeRetract 4-79, 4-95, 4-130

