Robot Structural Analysis Professional

AUTODESK

Comparison with AFNOR Benchmarks

"Guide de validation des progiciels de calcul de structures" AFNOR, 1990

INTRODUCTION	4
STATIC ANALYSIS	5
1. BAR STRUCTURES	5
2D Euler's beam bending - SSLL01	6
2D Timoshenko's beam bending - SSLL02	7
Beam with elastic support - SSLL03	8
3D frame with elastic supports - SSLL04	9
Bending of rigidly connected beams - SSLL05	11
2D circular arch bending - SSLL06	12
3D circular arch transverse bending - SSLL07	13
2D semi-circular arch bending - SSLL08	14
Plane truss with nodal loads - SSLL09	
Plane frame with uniform loads - SSLL10	
Plane truss with nodal loads - SSLL11	
Plane truss under thermal and displacement loadings - SSLL12	
Shortening of a tie-beam - SSLL13	
Plane frame bending - SSLL14	20
Beam on elastic (Winkler's) soil foundation - SSLL15	21
Beam on elastic (Winkler's) soil foundation - SSLL16	23
2. PLATE/SHELL STRUCTURES	
Rectangular membrane under in-plane shear - SSLP01	
Tension of perforated membrane - SSLP02	
Rectangular plate: cantilever slab - SSLS01	
Simply supported square plate - SSLS02	
Circular plate under uniform load - SSLS03.	30
Beam of Z-section (using shell elements) - SSLS04	31
Box section in torsion (using shell elements) - SSLS05	
Thin-walled cylinder under uniform radial pressure - SSLS06	33
Thin-walled cylinder with uniform axial load - SSLS07	34
Thin-walled cylinder under hydrostatic pressure - SSLS08 Thin-walled cylinder under self-weight - SSLS09	35
Torus under uniform internal pressure - SSLS10	
Thin-walled cone subjected to uniform internal pressure - SSLS10	
Spherical shell subjected to a pressure - SSLS14	
Spherical shell subjected to a moment - SSLS14	
Spherical shell - SSLS17	
Cylindrical shell subjected to concentrated force - SSLS20	
Spherical shell with an opening - SSLS21	+2
Spherical dome subjected to uniform external pressure - SSLS22	.43
Cylindrical membrane subjected to bending - SSLS23	45
Simply supported rectangular plate with uniform load - SSLS24	
Simply supported rectangular plate with bending moment - SSLS26	
Plate under perpendicular shear - SSLS27	
3. VOLUMIC STRUCTURES	50
Solid cylinder subjected to simple tension - SSLV01	
Uniform compression of a solid sphere - SSLV02	
Tension of a rectangular prism due to self weight - SSLV07	
DYNAMIC ANALYSIS	55
1. BAR STRUCTURES	
Slender beam fixed at both ends with different inertia - SDLL03	56
Slender beam supported at both ends subjected to axial load - SDLL05	

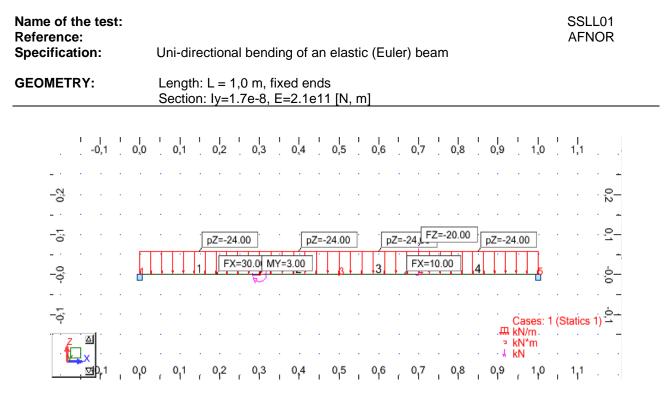
	Transient analysis of a cantilever under acceleration or imposed load - SDLL 06	59
	Slender beam supported at both ends subjected to moving load with constant speed-SDLL 07	
	Plane grillage of beams - SDLL08	
	Slender cantilever fixed at both ends with variable rectangular section - SDLL09	
	Slender beam fixed at both ends with variable rectangular section - SDLL10	
	Ring fixed at two points - SDLL12	65
	Ring with flexible support at external point - SDLL13	
	Eigenmode of a thin-walled tube section - SDLL14	68
	Slender cantilever with mass eccentricity at the end of it - SDLL15	
	Symmetrical frame bending - SDLX01	71
	Hovgaard's problem - stress in the 3D pipe - bending - SDLX02	72
2.	PLATES/SHELLS STRUCTURES	
	Cantilever plate - SDLS01	
	Lozenge - shaped thin plate with one edge fixed - SDLS02	
	Simply supported rectangular thin plate - SDLS03	
	Circular plate with fixed inner edge - SDLS04	
	Compressor blade: thin shell - SDLS05	
	Modal analysis of plate - SDLS06	80
	HERMOMECHANICAL ANALYSIS	01
11	HERMUMECHANICAL ANALYSIS	81
1	BAR STRUCTURES	Q1
1.	Arch with 2 pinned supports - HSLL01	
		82
2.	PLATES/SHELLS STRUCTURES	84
	Thin plate deformed according to spherical curve - HSLS01	
C	ONCLUSIONS	86

INTRODUCTION

This verification manual contains a range of static and dynamic benchmark tests covering fundamental types of behaviour encountered in structural analysis. 58 examples of static, dynamic, and thermo-mechanics problems are solved using bar, plate, and shell FE. All the examples have been taken from: *"Guide de validation des progiciels de calcul de structures"* AFNOR, 1990

Benchmark results (signed as "AFNOR") are recalled, and compared with results of **ROBOT Structural Analysis Professional 2025.**

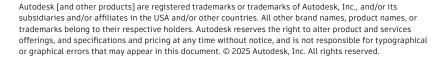
Each problem contains the following parts:


- the name of the benchmark as used in the AFNOR guide,
- short problem description,
- scheme of the model,
- comparison between ROBOT Structural Analysis Professional results and reference values.

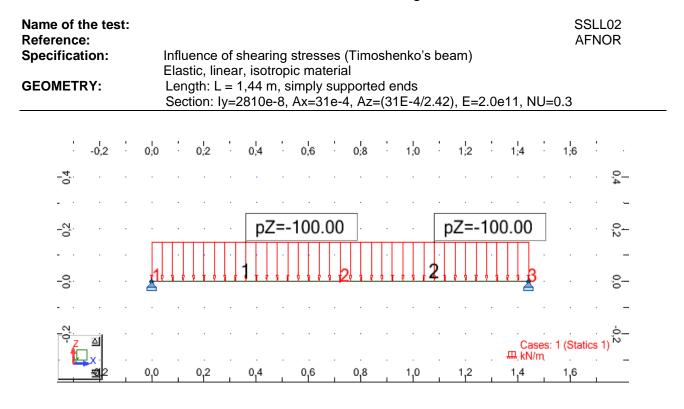
STATIC ANALYSIS 1. BAR STRUCTURES

2D Euler's beam bending - SSLL01

DATA FILE:


SSLL01.rtd

COMPARISON:


		Value		
Node	Compared result	RSA (ROBOT results)	AFNOR (Referenced values)	Difference %
3	Shearing force (N)	540	-540	0.0
3	Bending moment (Nm)	2800	2800	0.0
3	Vertical displacement (m)	-4.90196e-2	-4.90196e-2	0.0
1	Horizontal reaction (N)	-24000	-24000	0.0

CONCLUSIONS:

Exact agreement of results. The different signs of shear forces arise from different local coordinates sign convention.

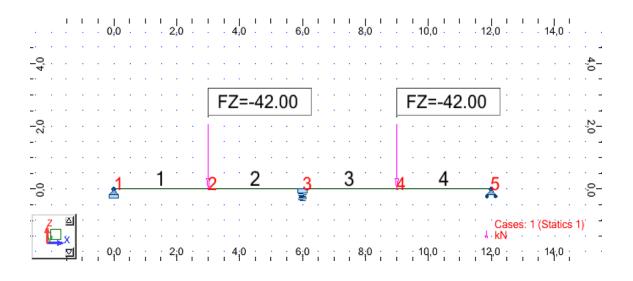
2D Timoshenko's beam bending - SSLL02

DATA FILE:

SSLL02.rtd

COMPARISON:

Nodo	Compared result	Va	lue	Difference
Node	Compared result	RSA	AFNOR	%
2	displacement (m)	-1.25926e-3	-1.25926e-3	0.0


CONCLUSION:

Exact agreement of results.

AUTODESK

Beam with elastic support - SSLL03

Name of the test: Reference:	SSLL03 AFNOR
Specification:	Simple beam under bending with elastic support in the centre of length; material: elastic, linear, isotropic.
GEOMETRY:	Length: L = 12 m, simply supported at ends and in the middle Section: Iy=6.3 e-4, E=2.1e11 Stiffness Kz=2.1 e6 N/m.

DATA FILE:

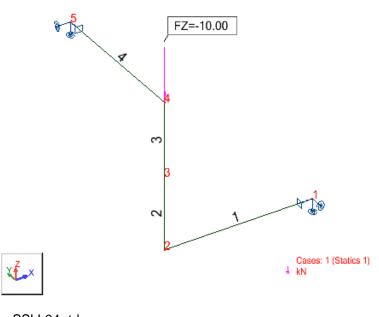
SSLL03.rtd

COMPARISON:

Nodo	Compared result	Va	Difference	
Node		RSA	AFNOR	%
3	Bending moment (Nm)	63000	63000	0.0
3	3 Displacement UZ (m)		-0.010	0.0
3	Vertical reaction (N)	21000	21000	0.0

CONCLUSION:

Exact agreement of results.


3D frame with elastic supports - SSLL04

 Name of the test:
 SSLL04

 Reference:
 AFNOR

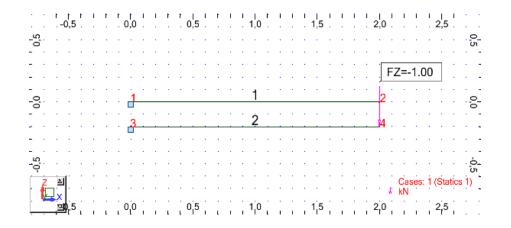
 Specification:
 Spatial frame with elastic supports, under bending and torsion; material: elastic, linear, isotropic (non-compressible bars assumed)

GEOMETRY:

SSLL04.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
5	Moment MX (Nm)	1562.5	1562.5	0.0
5	Moment MY (Nm)	-8437.5	-8437.5	0.0
5	Moment MZ (Nm)	3125.0	3125.0	0.0
1	Moment MX (Nm)	-1562.5	-1562.5	0.0
1	Moment MY (Nm)	-8437.5	-8437.5	0.0
1	Moment MZ (Nm)	3125.0	3125.0	0.0
5	Displacement UY (m)	-0.029762	-0.029762	0.0
5	Rotation RX (rad)	0.16071	0.16071	0.0
4	Displacement UZ (m)	-0.37004	-0.37004	0.0



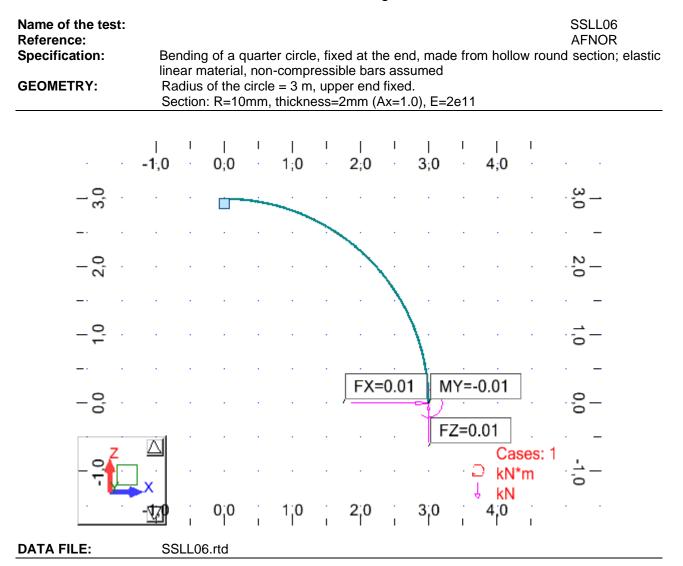
CONCLUSIONS:

Exact agreement of results.

Bending of rigidly connected beams - SSLL05

Name of the test: Reference:		SSLL05 AFNOR
Specification: GEOMETRY:	Beams with rigid link – bending of non-compressible bars Length: L = 2 m, distance 0,2 m, Left ends - fixed, right – rigidly linked Section: Iz=4/3e-8, Ax=1.0, E=2e11	

COMPARISON:


Node	Compared result	RSA	AFNOR	Difference %
2	Displacement (m)	-0.125	-0.125	0.0
4	Displacement (m)	-0.125	-0.125	0.0
1	Vertical reaction (N)	500	500	0.0
1	Moment My (Nm)	-500	500	0.0
3	Vertical reaction (N)	-500	500	0.0
3	Moment My (Nm)	-500	500	0.0

CONCLUSION:

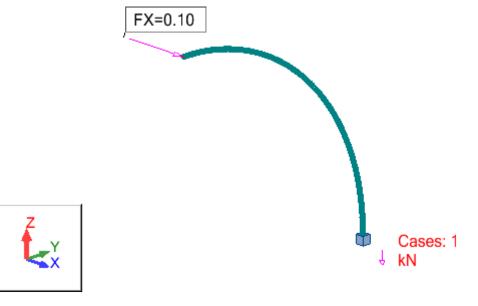
Exact agreement of results (taking into account different sign convention).

2D circular arch bending - SSLL06

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
91	Displacement UX(m)	0.3791	0.3791	0.0
91	Displacement UZ(m)	0.2417	0.2417	0.0
91	Rotation RY (rad)	0.1654	0.1654	0.0

CONCLUSION:


Exact agreement of results.

AUTODESK

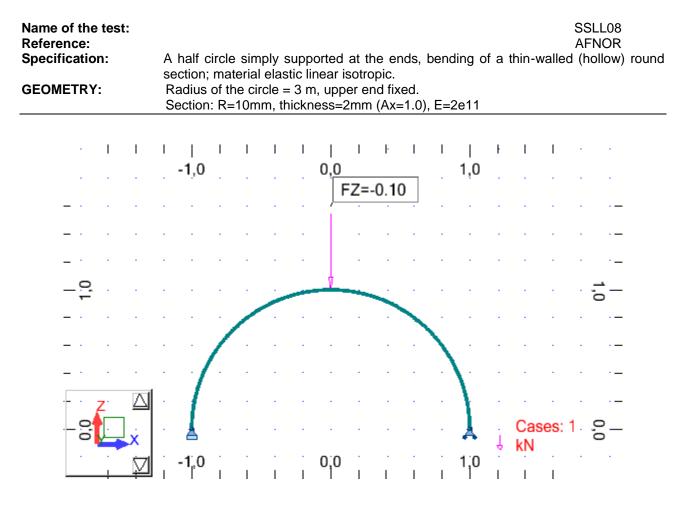
3D circular arch transverse bending - SSLL07

Name of the test: Reference:	SSLL07 AFNOR
Specification:	A quarter circle fixed at the end, bending and torsion of a thin-walled (hollow) round section; material elastic linear isotropic.
GEOMETRY:	Radius of the circle = 1 m, lower end fixed. Section: R=10mm, thickness=2mm, E=2e11

DATA FILE:

SSLL07.rtd

COMPARISON:


Node	Compared result	RSA	AFNOR	Difference %
91	Displacement UX (m)	0.13461	0.13462	0.0
16	Moment MX (Nm)	74.115 (mean)	74.118	0.04
16	Moment MZ (Nm)	96,589 (mean)	96.592	0.03

CONCLUSIONS:

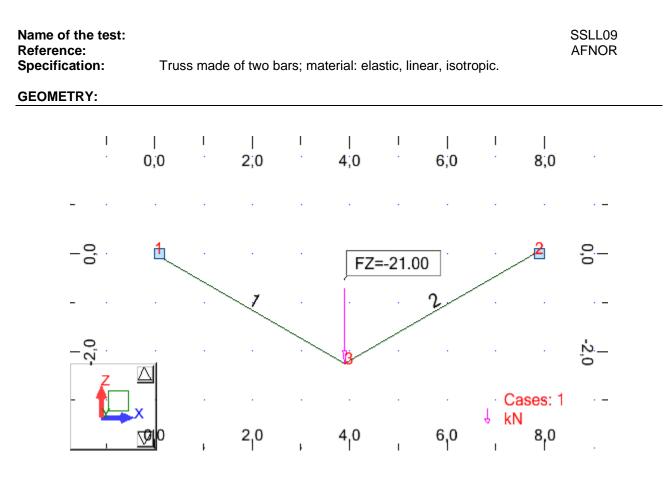
Results correct.

2D semi-circular arch bending - SSLL08

DATA FILE: SSLL08.rtd

COMPARISON:

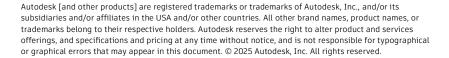
Node	Compared result	RSA	AFNOR	Difference %
1	Rotation RY(rad)	3.0775e-2	-3.0774e-2	0.0
181	Rotation RY(rad)	-3.0774e-2	3.0774e-2	0.0
91	Displacement UZ (m)	-1.9206e-2	-1.9206e-2	0.0
181	Displacement UX (m)	5.3911e-2	5.3912e-2	0.0


CONCLUSIONS:

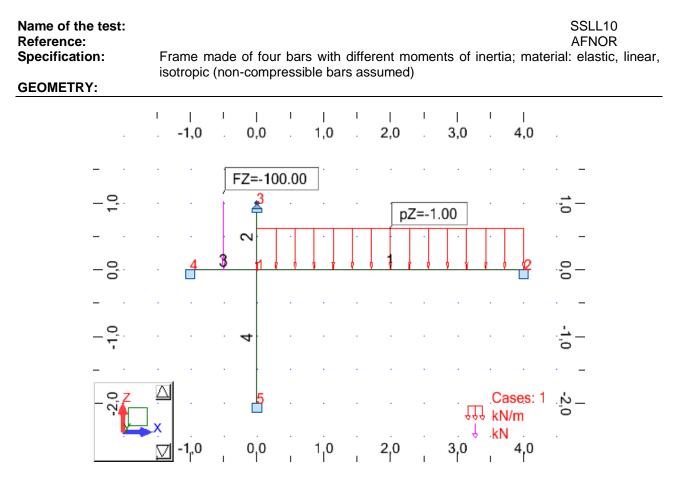
Exact agreement of results.

AUTODESK

Plane truss with nodal loads - SSLL09


DATA FILE: SSLL09.rtd

COMPARISON:


Node	Compared result	RSA	AFNOR	Difference %
3	Displacement UZ (m)	-3.000 e-3	-3.000 e-3	0.0
1 - 3	Tensile force (N)	21.000 e+3	21.000 e+3	0.0
2 - 3	Tensile force (N)	21.000 e+3	21.000 e+3	0.0

CONCLUSION:

Exact agreement of results.

Plane frame with uniform loads - SSLL10

DATA FILE: SSLL10.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
1	Rotation RY (rad)	-0.227119	0.227118	0.0
1 - 1	Moment MY (Nm)	-11023.72	11023.72	0.0
2 - 1	Moment MY (Nm)	-113.559	113.559	0.0
3 - 1	Moment MY (Nm)	-12348.59	-12348.588	0.0
4 - 1	Moment MY (Nm)	-1211.2997	1211.2994	0.0

CONCLUSION:

Exact agreement of results (taking into account different sign convention).

Name of the test: SSLL11 AFNOR **Reference: Specification:** Truss made of four bars of different cross sections; material: elastic, linear, isotropic (non-compressible bars assumed). **GEOMETRY:** L L I L L L L L L I L I 2,0 0.0 1,0 FZ=-9.81 Δ Cases: kΝ 1,0 0,0 2,0

Plane truss with nodal loads - SSLL11

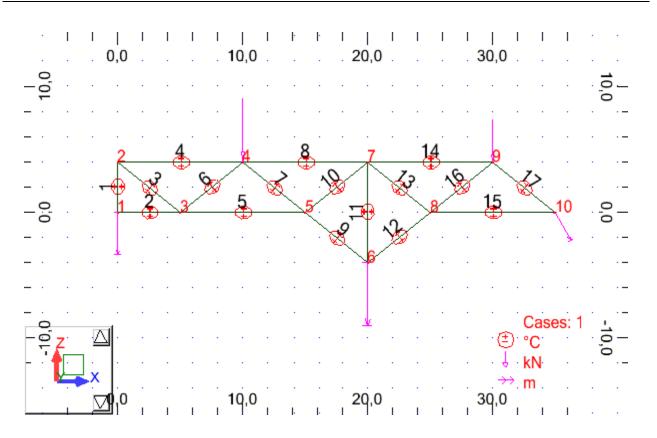
DATA FILE: SSLL11.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
3	Displacement UX (m)	0.26517e-3	0.26517e-3	0.0
3	Displacement UZ (m)	0.08839e-3	0.08839e-3	0.0
4	Displacement UX (m)	3.47903e-3	3.47902e-3	0.0
4	Displacement UZ (m)	-5.60035e-3	-5.60084e-3	0.008

CONCLUSION:

Exact agreement of results.



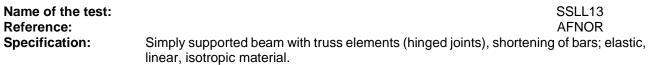
Plane truss under thermal and displacement loadings - SSLL12

Name of the test:	SSLL12
Reference:	AFNOR
Specification:	Plane truss - initial displacements - dilatation effect - pinned supports.
Specification.	Plane truss - initial displacements - dilatation effect - plinted supports.

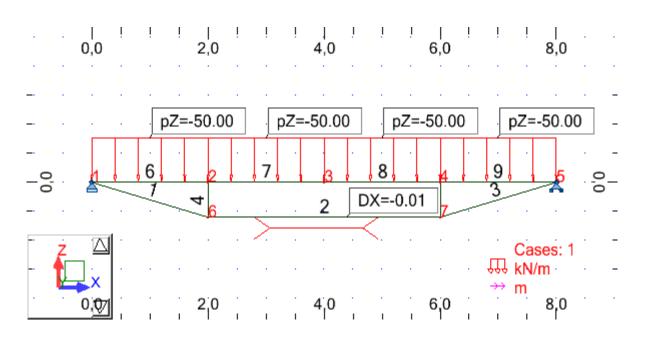
GEOMETRY:

DATA FILE: SSLL12.rtd

COMPARISON:


Node	Compared result	RSA	AFNOR	Difference %
6 - 8	Tension force (N)	43633	43633	0.0
8	Displacement UZ (m)	-0.01618	-0.01618	0.0

CONCLUSION:


Exact agreement of results.

Shortening of a tie-beam - SSLL13

GEOMETRY:

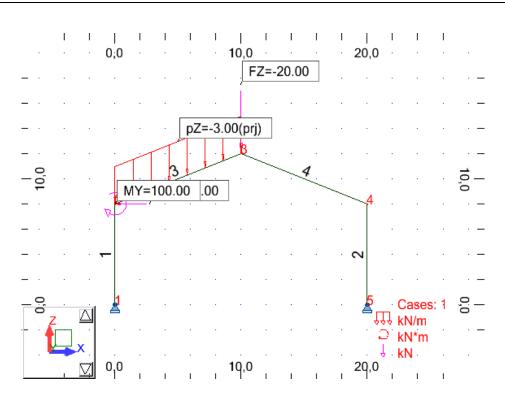
DATA FILE: SSLL13.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
6 - 7	Tension force (N)	584584	584584	0.0
3	Moment MY (Nm)	49249.5	49249.5	0.0
2	Displacement UZ (m)	-0.5428 e-3	-0.5428 e-3	0.0

CONCLUSION:

Exact agreement of results.


Plane frame bending - SSLL14

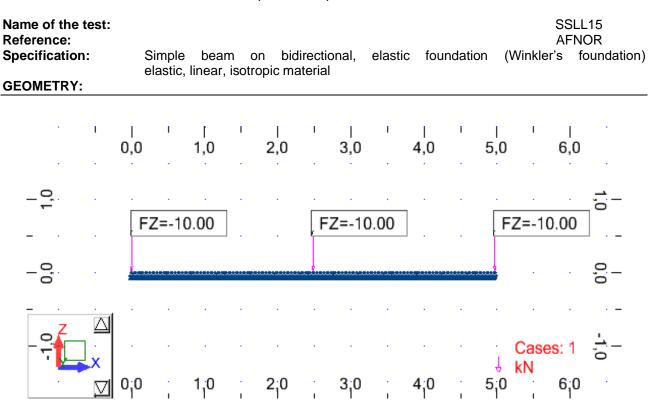
 Name of the test:
 SSLL14

 Reference:
 AFNOR

 Specification:
 Simply supported symmetrical frame with asymmetric load; material: elastic, linear, isotropic (non-compressible bars assumed).

GEOMETRY:

DATA FILE: SSLL14.rtd


COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
1	Vertical reaction (N)	31500.0	31500.0	0.0
1	Horizontal reaction (N)	20239.4	20239.4	0.0
3	Displacement UZ (m)	-0.03072	-0.03072	0.0

CONCLUSION:

Exact agreement of results.

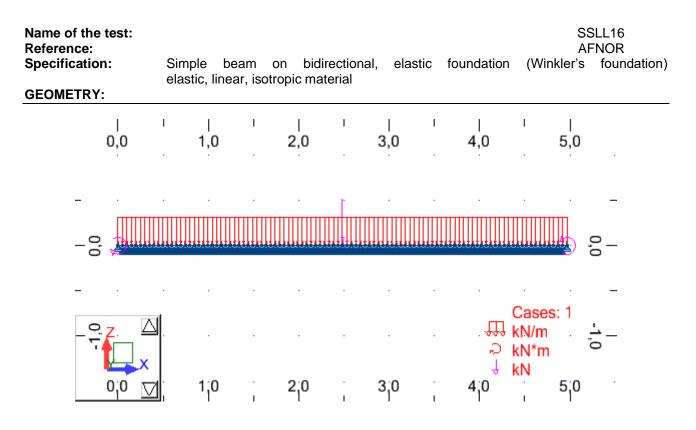
Beam on elastic (Winkler's) soil foundation - SSLL15

DATA FILE:

SSLL15.rtd (dense division on beam-elements with elastic supports), SSLL15R.rtd (2 Winkler's beam-elements, without nodal supports)

COMPARISON:

Node	Compared result	RSA (SSLL15.rtd)	AFNOR	Difference %
51	Moment MY (Nm)	-5758	5759	0.017
51	Displacement UZ (m)	-0.006843	-0.006844	0.015
1	Displacement UZ (m)	-0.007859	-0.007854	0.064
1	Rotation RY (rad)	-0.000706	-0.000706	0.0


Node	Compared result	RSA (SSLL15R.rtd)	AFNOR	Difference %
2	Moment MY (Nm)	-5759	5759	0.0
2	Displacement UZ (m)	-0.0068434	-0.006844	0.009
1	Displacement UZ (m)	-0.0078588	-0.007854	0.061
1	Rotation RY (rad)	-0.000706	-0.000706	0.0

CONCLUSIONS:

AUTODESK

Excellent agreement of results. (taking into account different sign convention).

Beam on elastic (Winkler's) soil foundation - SSLL16

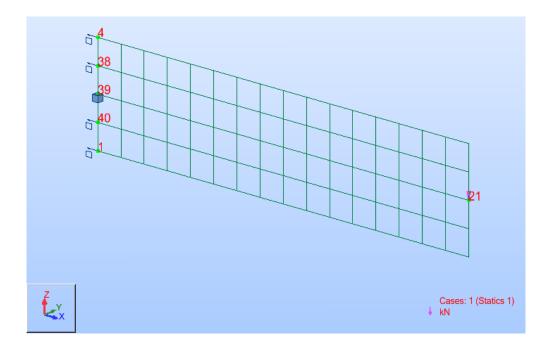
DATA FILE: SSLL16.rtd (dense division on beam-elements with elastic supports), SSLL16R.rtd (2 Winkler's beam-elements, without nodal supports)

COMPARISON:

Node	Compared result	RSA (SSLL16.rtd)	AFNOR	Difference %
1	Rotation RY (rad)	-0.003045	-0.003045	0.0
1	Vertical reaction FZ (N)	11675	11674	0.01
51	Displacement UZ (m)	-0.00423297	-0.00423326	0.01
51	Moment MY (Nm)	-33839	-33840	0.0

Node	Compared result	RSA (SSLL16R.rtd)	AFNOR	Difference %
1	Rotation RY (rad)	-0.003045	-0.003045	0.0
1	Vertical reaction FZ (N)	11674	11674	0.0
2	Displacement UZ (m)	-0.00423299	-0.00423326	0.01
2	Moment MY (Nm)	-33840	-33840	0.0

CONCLUSIONS:


Excellent agreement of results. (taking into account different sign convention).

2. PLATE/SHELL STRUCTURES

AUTODESK

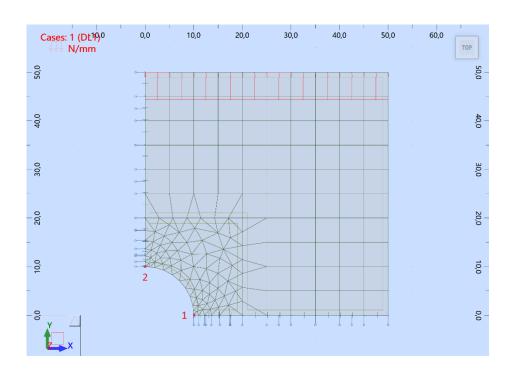
Rectangular membrane under in-plane shear - SSLP01

Name of the test: Reference: Specification:	Rectangular shell: in-plane bending and shear.	SSLP01 AFNOR	
GEOMETRY:	Mesh 4x16 (3mm size square FE), point load in node 21		

DATA FILE SSLP01.rtd

COMPARISON:

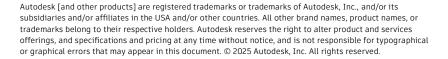
Node	Compared result	RSA	AFNOR	Difference %
21	Displacement UZ (mm)	0.3582	0.3573	0.252
4	Stress (N/mm2)	-79.56	-80.0	0.550


CONCLUSION:

Very good agreement of results.

Tension of perforated membrane - SSLP02

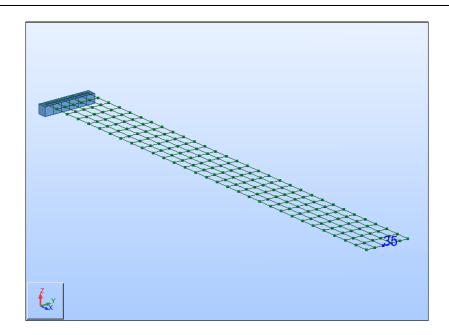
Name of the test: Reference: Specification:	Simple tension of perforated membrane.	SSLP02 AFNOR	
GEOMETRY:	$\frac{1}{4}$ of a model analyzed (due to symmetry) with a mesh 10x10		


DATA FILE SSLP02.rtd

COMPARISON:

Node	Compared result	RSA Syy Polar (0,0,0)	AFNOR	Difference %
1	Stress σθθ (N/mm2)	7.40	7.50	1.33
2	Stress $\sigma_{\theta\theta}$ (N/mm2)	- 2.49	- 2.50	0.04

CONCLUSION:


Good agreement of results.

Rectangular plate: cantilever slab - SSLS01

Name of the test: Reference: Specification:	Captilover clob under uniform proceure	SSLS01 AFNOR
Specification:	Cantilever slab under uniform pressure	

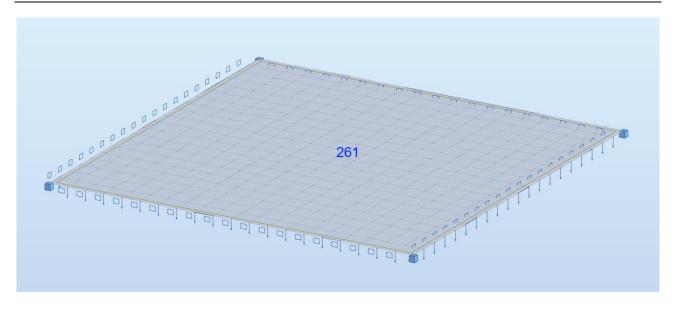
GEOMETRY:

DATA FILE SSLS01.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
35	Displacement UZ (mm)	- 95.919	- 95.90	0.021

CONCLUSION:


Excellent agreement of results.

Simply supported square plate - SSLS02

Name of the test: Reference:		SSLS02 AFNOR
Specification:	Simply supported square plate under self weight.	

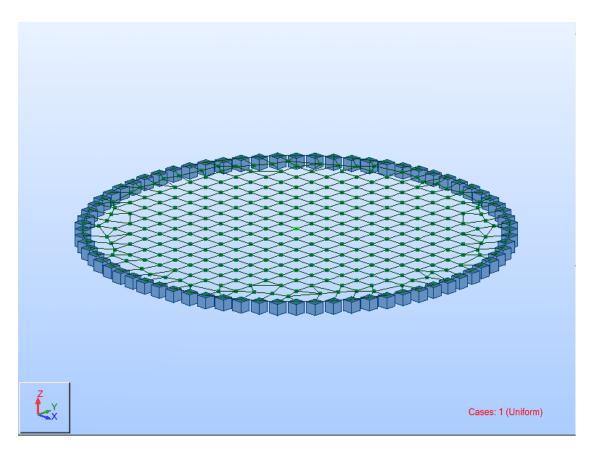
GEOMETRY:

DATA FILE: SSLS02.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
261	Displacement UZ (mm)	-0,1647	- 0.1648*	0.06

* "Guide..." presents an incorrect value (compare with SSLS 24)


CONCLUSION:

Excellent agreement of results.

Circular plate under uniform load - SSLS03

Name of the test: Reference: Specification:	Circular plate with clamped edges under uniform load	SSLS03 AFNOR
Specification.	Circular plate with clamped edges under uniform load	

GEOMETRY:

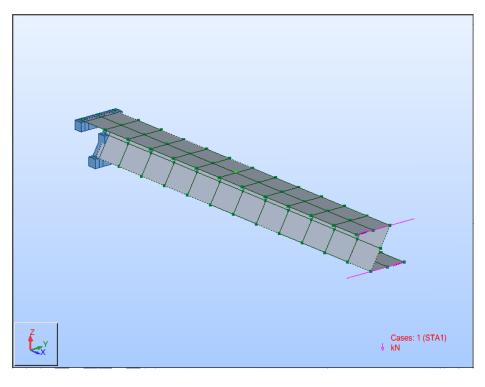
DATA FILES: SSLS03.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
1	Displacement UZ (mm)	- 6.477	- 6.500	0.36

CONCLUSION:

Very good agreement of results.

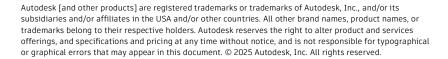

AUTODESK

Beam of Z-section (using shell elements) - SSLS04

Name of the test: Reference:

SSLS04 AFNOR

GEOMETRY:

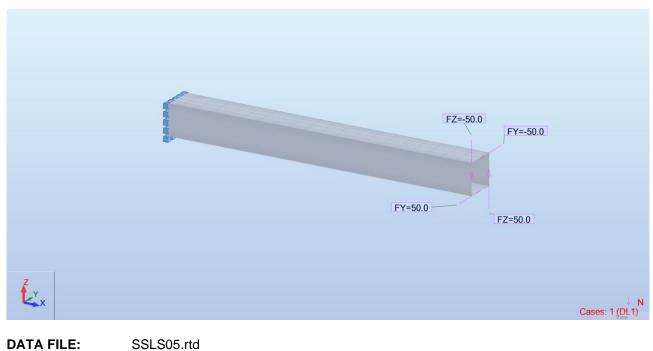

DATA FILE: SSLS04.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
117	Displacement UY (mm)	- 8.93	- 7.150	24.895

CONCLUSION:

Poor agreement of results.



AUTODESK

Box section in torsion (using shell elements) - SSLS05

Name of the test: Reference:		SSLS05 AFNOR
Specification:	Shell - Box section - Shear - Torsion.	

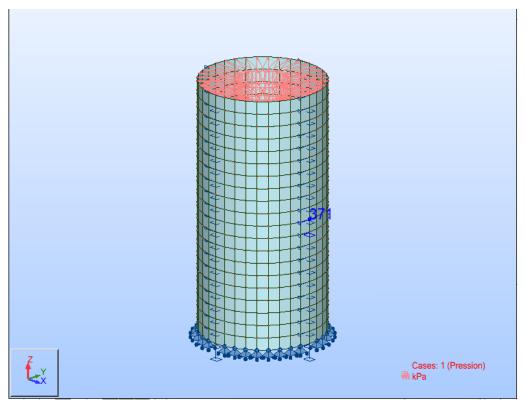
GEOMETRY:

DATA FILE:

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
158	Displacement UY (m)	- 0.616 e-6	- 0.617 e-6	0.17
158	Rotation RX (rad)	0.1232 e-4	0.123 e-4	0.15
83	Displacement UZ (m)	- 0.986 e-6	- 0.987 e-6	0.09
83	Rotation RX (rad)	0.1972 e-4	0.197 e-4	0.11

CONCLUSION:


Excellent agreement of results.

Thin-walled cylinder under uniform radial pressure - SSLS06

Name of the test: Reference:		SSLS06 AFNOR
Specification:	Shell - Cylinder - Material: elastic - Pressure	

GEOMETRY:

DATA FILE:

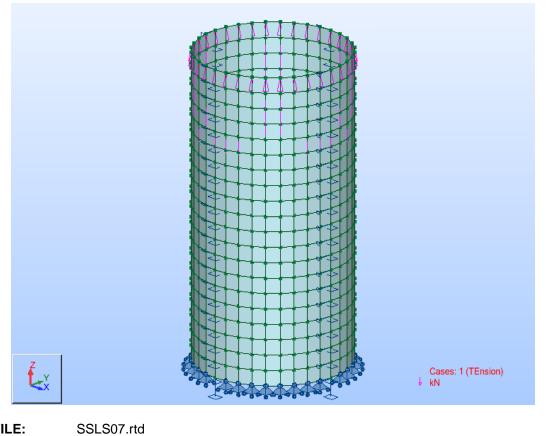
SSLS06.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
371	Displacement UX (mm)	2.371 e-3	2.380 e-3	0.378
371	Circumfer. stress [kPa]	498.1	500.0	0.380
741	Displacement UZ (mm)	- 2.964 e-3	- 2.860 e-3	1.036

CONCLUSION:

Good agreement of results.


AUTODESK

Thin-walled cylinder with uniform axial load - SSLS07

Name of the test: Reference:		SSLS07 AFNOR
Specification:	Shell - Material: elastic - uniform load - Cylinder	

GEOMETRY:

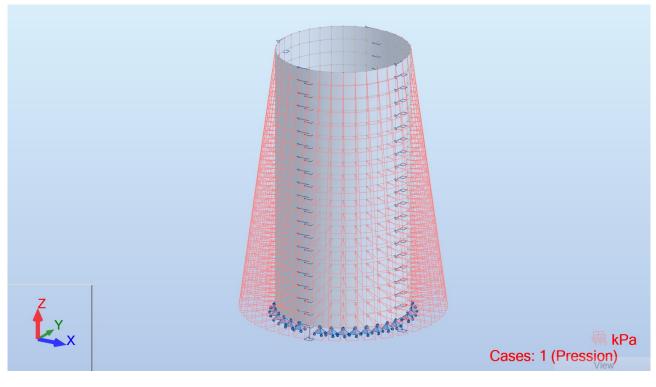
DATA FILE:

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
371	Displacement UX (mm)	- 7.152 e-4	-7.140 e-4	0.168
371	Tension stress (kPa)	500.6	500.0	0.120
741	Displacement UZ (mm)	9.626 e-3	9.520 e-3	1.113

CONCLUSION:

Very good agreement of results.


AUTODESK

Thin-walled cylinder under hydrostatic pressure - SSLS08

Name of the test: Reference:		SSLS08 AFNOR
Specification:	Shell - Material: elastic - Hydrostatic pressure - Cylinder	

GEOMETRY:

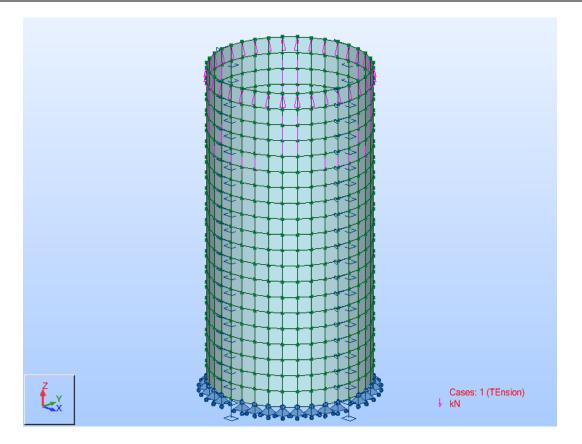
DATA FILE:

SSLS08.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
371	Displacement UX (mm)	2.371 e-3	2.380 e-3	0.379
371	Radial stress (kPa)	498.1	500.0	0.380
741	Displacement UZ (mm)	-2.964 e-3	-2.860 e-3	0.489

CONCLUSION:


Excellent agreement of results.

Thin-walled cylinder under self-weight - SSLS09

Name of the test: Reference:		SSLS09 AFNOR
Specification:	Shell - Material: elastic – Self-weight - Cylinder	

GEOMETRY:

DATA FILE:

SSLS09.rtd

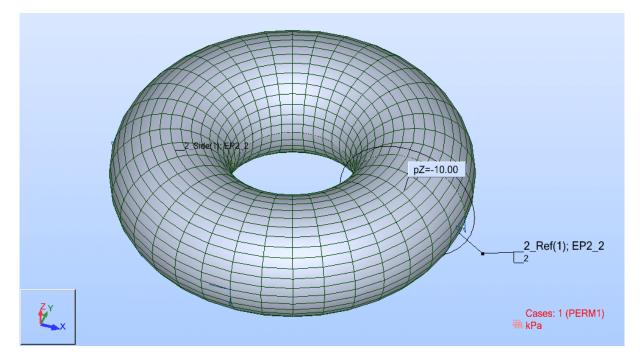
COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
371	Displacement UX (mm)	0.2243 e-3	0.2245 e-3	0.089
38	Circumfer. stress (kPa)	312.5	314.2	0.637
741	Displacement UZ (mm)	-3.019 e-3	-3 e-3	0.956

CONCLUSION:

Excellent agreement of results.

AUTODESK



Torus under uniform internal pressure - SSLS10

SSLS10 AFNOR

Name of the test:	
Reference:	
Codification:	Shell - Torus - Material: elastic - Pressure.

GEOMETRY:

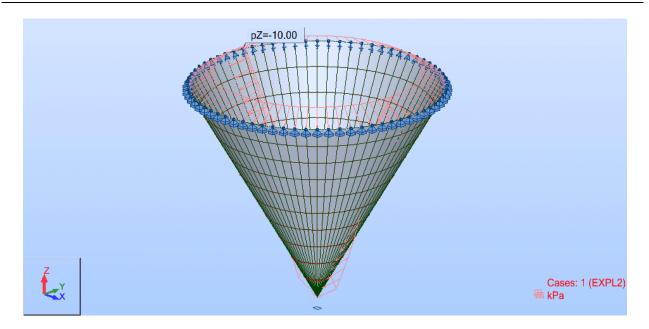
DATA FILE: SSLS10.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
	Displacement UY (m)	0.7906e-7	1.19 e-7	33,56
335 (internal)	Horizontal stress σ _{xx} (Pa)	2.389e+5	2.50 e+5	4,44
	Vertical stress σ_{YY} (Pa)	7.355e+5	7.50 e+5	1,93
	Displacement UY (m)	1.934e-6	1.79 e-6	8,04
362 (external)	Horizontal stress σ_{XX} (Pa)	2.601e+5	2.50 e+5	4,04
	Vertical stress σ_{YY} (Pa)	4.156e+5	4.17 e+5	0,34

CONCLUSION:

Good agreement of results.



Thin-walled cone subjected to uniform internal pressure - SSLS11

Name of the test: Reference:		SSLS11 AFNOR
Specification:	Shell - Cone - Material: elastic - Pressure.	

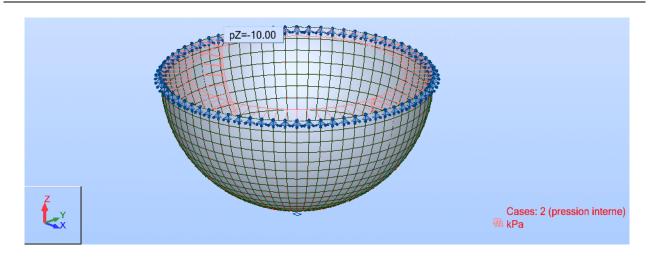
GEOMETRY:

DATA FILE: SSLS11.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
7	Vertical stress (Pa)	1.45 e+5	1.44 e+5	0.69
(mid- height)	Horizontal stress (Pa)	2.88 e+5	2.89 e+5	0.03
	Displacement UX (δ_R) (m)	0.5843 e-6	0.5842 e-6	0.02

CONCLUSION:


Excellent agreement of results.

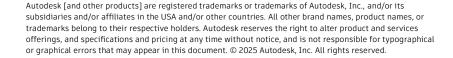
Spherical shell subjected to a pressure - SSLS14

Name of the test: Reference:		SSLS14 AFNOR
Codification:	Shell - spherical cup - Material: elastic - Uniform pressure	

GEOMETRY:

DATA FILE: SSLS14.rtd

COMPARISON:

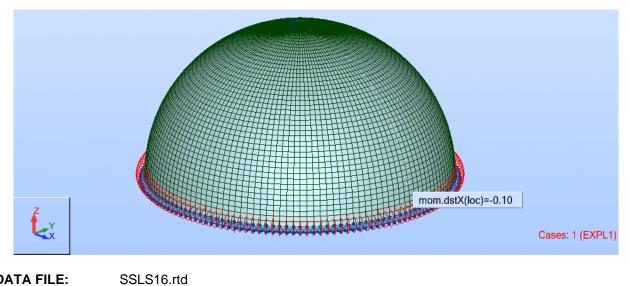

Node	Compared result	RSA	AFNOR	Difference %
All	Horizontal stress (Pa)	2.499 e+5	2.50 e+5	0.12
1	Displacement δ_R (m)	8.33 e-7	8.33 e-7	0.0

CONCLUSION:

Excellent agreement of results.

AUTODESK

39



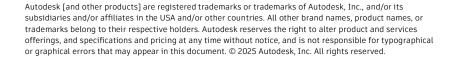
VERIFICATION PROBLEM

Spherical shell subjected to a moment - SSLS16

Name of the test: Reference: Codification:	Shell - spherical cup - Material: elastic - Uniform moment	SSLS16 AFNOR
Codification:	Shell - spherical cup - Material: elastic - Uniform moment	

GEOMETRY:

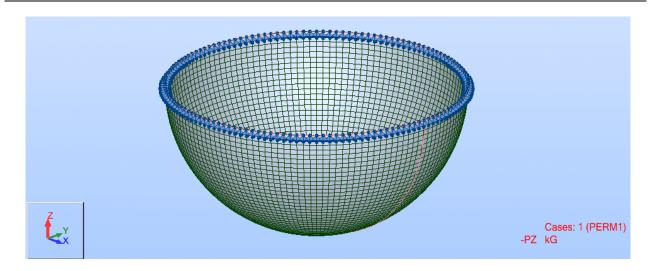
DATA FILE:


COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
602	Horizontal stress (Pa)	8.34 e+5	8.26 e+5	0.96
692	Displacement δ _R (m)	3.93 e-6	3.93 e-6	0.0

CONCLUSION:

Excellent agreement of results.


AUTODESK

Spherical shell - SSLS17

Name of the test:		SSLS17
Reference:		AFNOR
Codification:	Shell - spherical cup - Material: elastic – Self weight	

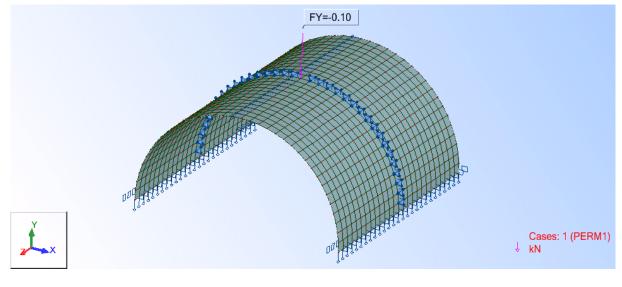
GEOMETRY:

DATA FILE: SSLS17.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
	Horizontal stress (Pa)	- 8.19 e+4	7.85 e+4	4.33
1	Vertical stress (Pa)	7.59 e+4	- 7.85 e+4	3.31
	Displacement δ _R (m)	4.99 e-7	4.86 e-7	2.67

CONCLUSION:


Good agreement of results.

Cylindrical shell subjected to concentrated force - SSLS20

Name of the test: Reference:		SSLS20 AFNOR
Codification:	Cylindrical shell - Material: elastic - Concentrated forces.	

GEOMETRY:

SSLS20.rtd

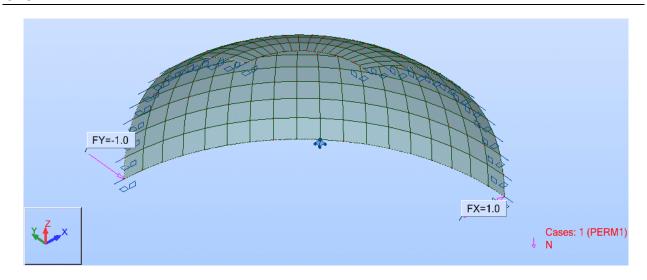
COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
500	Displacement UY (m)	-11.374 e-2	-11.390 e-2	0.14

CONCLUSION:

Excellent agreement of results.

Autodesk [and other products] are registered trademarks or trademarks of Autodesk, Inc., and/or its


AUTODESK

Spherical shell with an opening - SSLS21

Name of the test: Reference: Codification:

Spherical shell - Material: elastic - Concentrated forces.

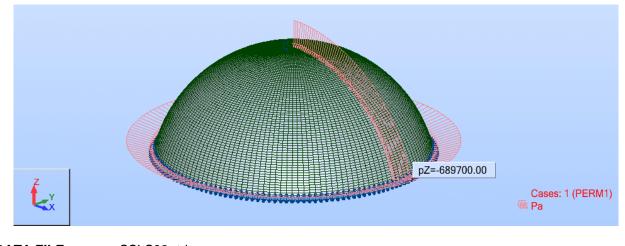
GEOMETRY:

DATA FILE: SSLS21.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
1	Displacement UX (m)	101.47 e-3	94.00 e-3	7.95

CONCLUSION:


Results correct.

AUTODESK

Spherical dome subjected to uniform external pressure - SSLS22

Name of the test: Reference:		SSLS22 AFNOR
Specification:	Spherical shell - Material: elastic - pressure.	

GEOMETRY:

DATA FILE:

SSLS22.rtd

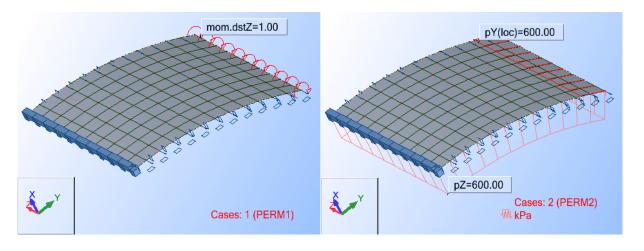
COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
5794	Displacement UX (m)	1.74 e-3	1.73 e-3	0.58
5824	Displacement UX (m)	1.02 e-3	1.02 e-3	0.0
5794	Vertical stress σ_{YY} (Pa)	-0.68 e+8	-0.74 e+8	8.11
5824	Vertical stress σ_{YY} (Pa)	-0.69 e+8	-0.68 e+8	1.47

Autodesk [and other products] are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or

CONCLUSION:

Results correct.


 TAUTODESK
 trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2025 Autodesk, Inc. All rights reserved.

Cylindrical membrane subjected to bending - SSLS23

Name of the test:	
Reference:	
Specification:	Bending - Membrane effect

SSLS23 AFNOR

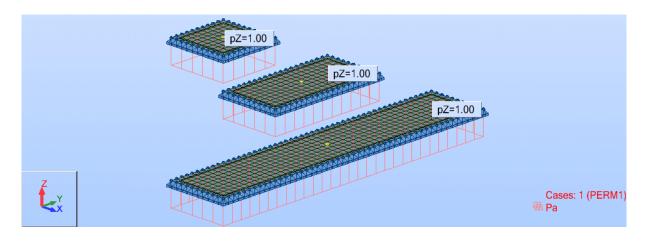
GEOMETRY:

DATA FILE: SSLS23.rtd

COMPARISON:

Case	Node	Compared result	RSA	AFNOR	Difference %
1 (flexion)	87	Stress σ _{xx} (MPa) Dir Y, External layer	60.00	60.00	0.00
2 (membrane)	87	Stress σ _{XX} (MPa) Direction Y	59.99	60.00	0.02

CONCLUSION:


Excellent agreement of results.

AUTODESK

Simply supported rectangular plate with uniform load - SSLS24

Name of the test: Reference:		SSLS24 AFNOR
Specification:	Plate - Pressure - Simple support.	

GEOMETRY:

DATA FILE: SSLS24.rtd

COMPARISON:

Case where b/a=1:

Node	Compared result	RSA	AFNOR	Difference %
81	Deflection (m)	44.35	44.30	0.10
81	Moment Mxx (Nm/m)	4.82	4.79	0.63
81	Moment Myy (Nm/m)	4.82	4.79	0.63

Case where b/a=2:

Node	Compared result	RSA	AFNOR	Difference %
267	Deflection (m)	110.16	110.06	0.40
267	Moment Mxx (Nm/m)	10.20	10.17	0.32
267	Moment Myy (Nm/m)	4.63	4.64	0.19

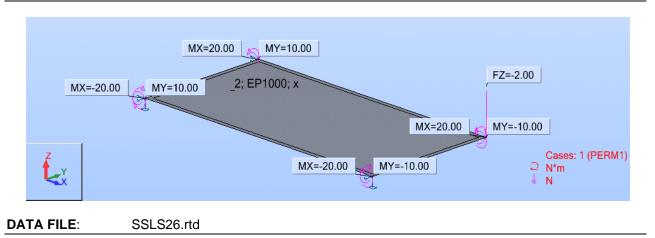
Case where b/a=5:

Node	Compared result	RSA	AFNOR	Difference %
693	Deflection (m)	140.53	141.60	0.75
693	Moment Mxx (Nm/m)	12.46	12.46	0.03
693	Moment Myy (Nm/m)	3.77	3.75	0.63

CONCLUSION:

Excellent agreement of results.

46


Autodesk® Robot Structural Analysis Verification Manual - Comparison with AFNOR benchmarks

Simply supported rectangular plate with bending moment - SSLS26

Name of the test: Reference:		SSLS26 AFNOR
Specification:	Plate - Pressure - Simple support – Nodal moment	

GEOMETRY:

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
1	Displacement UZ (m)	-12.44	-12.48	0.32

CONCLUSION:

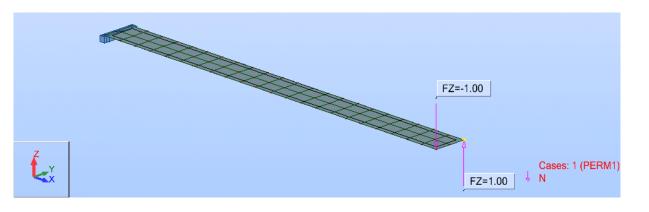

Excellent agreement of results.

Plate under perpendicular shear - SSLS27

Name of the test:		SSLS27
Reference:		AFNOR
Specification:	Plate under perpendicular shear with one edge fixed	

GEOMETRY:

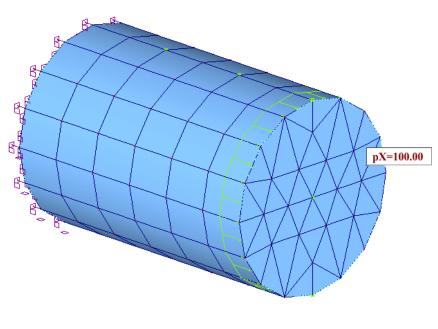
DATA FILE: SSLS27.rtd

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
3	Displacement Z (m)	35.39 e-3	35.37e-3	0.06

CONCLUSION:

Excellent agreement of results.


3. VOLUMIC STRUCTURES

AUTODESK

Solid cylinder subjected to simple tension - SSLV01

Name of the test: Reference:		SSLV 01 AFNOR
Specification:	Solid cylinder - Tension - compression - Poisson's coefficient.	

GEOMETRY:

Cases: 1 (F/A=100 MPa)

DATA FILE: SSLV01.rtd

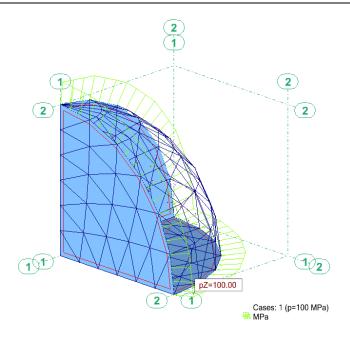
COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
200	Displacement UX (m)	1.500 e-3	1.500 e-3	0.0
214	Displacement UX (m)	1.500 e-3	1.500 e-3	0.0
208	Displacement UX (m)	1.500 e-3	1.500 e-3	0.0
138	Displacement UX (m)	1.000 e-3	1.000 e-3	0.0
76	Displacement UX (m)	0.500 e-3	0.500 e-3	0.0
200	Displacement UZ (m)	-0.1497 e-3	-0.1500 e-3	0.200
138	Displacement UZ (m)	-0. 1497 e-3	-0.1500 e-3	0.200
76	Displacement UZ (m)	-0. 1497 e-3	-0.1500 e-3	0.200

CONCLUSIONS:

Excellent agreement of results.

AUTODESK


This test has been carried out with values of the Poisson's coefficient ranging from 0.3 to 0.499. The relation between -(wa/R)/(ua/L) is always equal to Poisson's coefficient.

Uniform compression of a solid sphere - SSLV02

Name of the test :Reference :Specification:Solid sphere - Pressure.

GEOMETRY :

DATA FILE: SSLV02.rtd

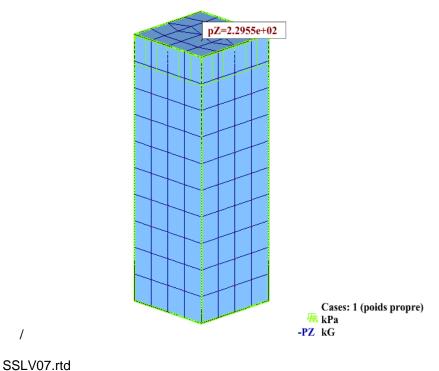
COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
1	Displacement UX (m)	-0.2 e-3	-0.2 e-3	0.0
39	Displacement UY (m)	-0.2 e-3	-0.2 e-3	0.0
14	Displacement UZ (m)	-0.2 e-3	-0.2 e-3	0.0
1	Stress Oxx [MPa]	- 100	- 100	0.0
39	Stress O yy [MPa]	- 100	- 100	0.0
14	Stress Ozz [MPa]	- 100	- 100	0.0
53	Displacement UX (m)	-0.1 e-3	-0.1 e-3	0.0
61	Displacement UY (m)	-0.1 e-3	-0.1 e-3	0.0
82	Displacement UZ (m)	-0.1 e-3	-0.1 e-3	0.0
53	Stress Oxx [MPa]	- 100	- 100	0.0
61	Stress O yy [MPa]	- 100	- 100	0.0
82	Stress Ozz [MPa]	- 100	- 100	0.0

CONCLUSION:

Exact agreement of results.

Autodesk [and other products] are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2025 Autodesk, Inc. All rights reserved.



SSLV 02 AFNOR

Tension of a rectangular prism due to self weight - SSLV07

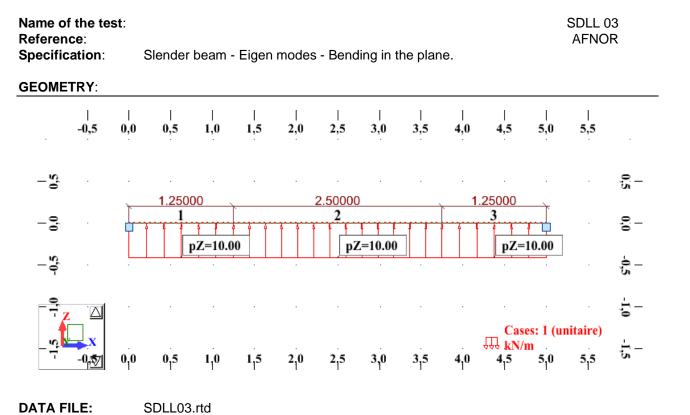
Name of the test :		SSLV07
Reference :		AFNOR
Specification:	Solid bar - Tension/compression - Poisson's coefficient.	

GEOMETRY:

DATA FILE:

COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
21	Displacement UZ (m)	-1.72e-6	-1.72e-6	0.0
(21, 7)	Δ displ. UZ (m) w ₂₁ -w ₇	0.013e-6	0.014e-6	4.285
(271, 259)	Δ displ. UX (m) w ₂₇₁ -w ₂₅₉	0.17e-6	0.17 e-6	0.0
271	Stress O zz [MPa]	0.2191	0.2290	4.323
146	Stress O zz [MPa]	0.1147	0.1145	0.17


CONCLUSION:

Results correct.

DYNAMIC ANALYSIS 1. BAR STRUCTURES

AUTODESK

Slender beam fixed at both ends with different inertia - SDLL03

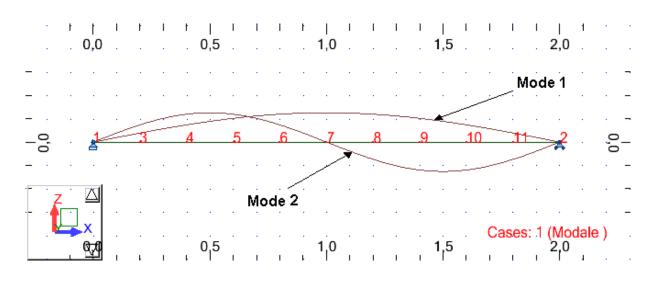
COMPARISON:

Node	Compared result	RSA	AFNOR	Difference %
	First bending mode frequency	62.782	63.009	0.4
56 X=0.4375	Eigenvector	1.428 e-2	1.435 e-2	0.5
50 X=0.8125	Eigenvector	3.985 e-2	4.002 e-2	0.4
2 X=1.25	Eigenvector	6.872 e-2	6.899 e-2	0.4
43 X=1.6875	Eigenvector	8.690 e-2	8.922 e-2	2.6
37 X=2.0625	Eigenvector	1.005 e-1	1.008 e-1	0.3
30 X=2.5	Eigenvector	1.054 e-1	1.057 e-1	0.3
31 t=0.0595 s X=2.4375	Vertical displacement UZ (m)	2.231 e-3	2.469 e-3	9.6

CONCLUSION:

Results correct.

Autodesk® Robot Structural Analysis Verification Manual - Comparison with AFNOR benchmarks



Slender beam supported at both ends subjected to axial load - SDLL05

Name of the test: Reference: Specification: Slender beam - Bending in the plane - Eigen modes -Initial stress.

SDLL 05 AFNOR

GEOMETRY:

DATA FILE: SDLL05.rtd

COMPARISON:

Case	Frequency	RSA	AFNOR	Difference %
Fx=0	Bending 1	28.694	28.702	0.027
Fx=0	Bending 2	114.701	114.807	0.093
Fx=1 e+5 N	Bending 1	22.428	22.434	0.026
Fx=1 e+5 N	Bending 2	108.981	109.080	0.091

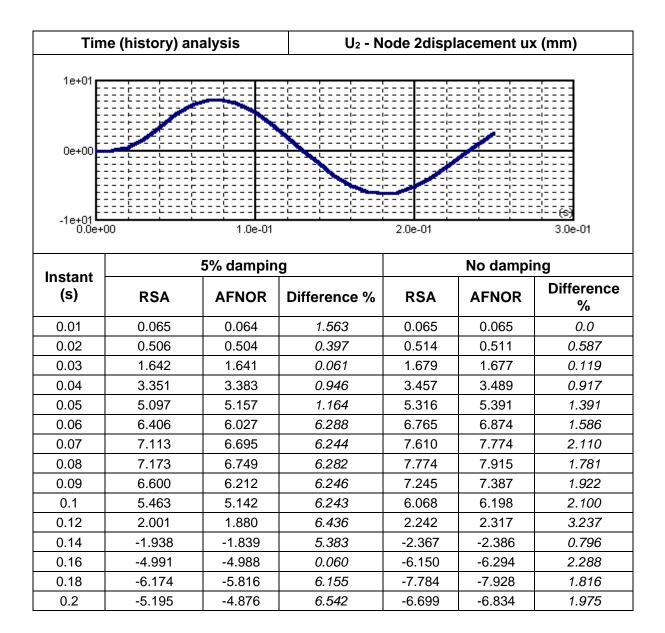
CONCLUSION:

Excellent agreement of results.

Transient analysis of a cantilever under acceleration or imposed load - SDLL 06

Name of the test:	SDLL 06
Reference:	AFNOR
Specification:	Slender beam - Time history analysis - Plane bending - Imposed force - Imposed acceleration - Modal damping.

GEOMETRY :


. ! 	-5,0		0,0	!! 	! ! 	 5,0	!.	•
10,0	· ·	FX=	429.68]	· ·			_
_ · · · _ · ·	· ·	· · ·	6	· ·	· ·	•	· ·	_
_ · · ·	· ·	· · ·	. 5	· ·	· ·		· ·	_
- 2°	· ·	 	. 4	· ·	· ·		5,0	
_ · · · _ · ·	· ·	· · ·	. 3	· ·	· ·	• •	· ·	_
_ 0.0	· ·	 		· ·	· ·	•	0,0	
Z.		· · ·	· ·	 Ca	ses: 1	(unitai	 re)	_
	× ∑5,0	 i i i	, 0 ₁ 0	🗄 kN	i i	5 ₁ 0	· · ·	_

DATA FILE:

SDLL 06.rtd

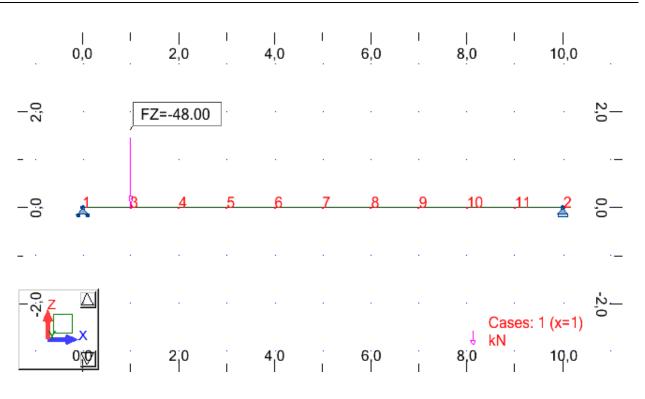
COMPARISON:

Modal analysis		RSA	AFNOR	Difference %
Mode 1	Frequency (Hz)	4.774	4.774	0.0

CONCLUSION:

Results correct.

Autodesk [and other products] are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2025 Autodesk, Inc. All rights reserved.



AUTODESK

Slender beam supported at both ends subjected to moving load with constant speed-SDLL 07

Name of the test:	SDLL 07
Reference:	AFNOR
Specification:	Slender beam - Bending in the plane - Eigen modes - Static initial stress.

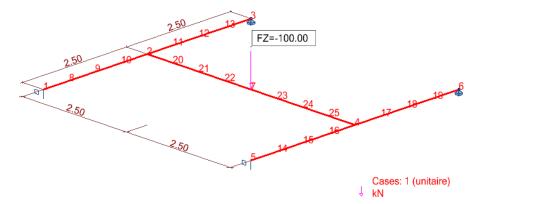
GEOMETRY:

DATA FILE: SDLL07.rtd

COMPARISON:

Instant	Compared result (node 7)	RSA	AFNOR	Difference %
T=0.1 s	Deflection (m)	-0.04705	-0.04763	1.217
T=0.2 s	Deflection (m)	-0.3206	-0.3235	0.890
T=0.5 s	Deflection (m)	-1.4254	-1.4371	0.814

CONCLUSION:


Very good agreement of results.

AUTODESK

Plane grillage of beams - SDLL08

Name of the test: Reference: Specification:	Eigen modes - Transverse bending - Imposed force.	SDLL 08 AFNOR
GEOMETRY :		

COMPARISON:

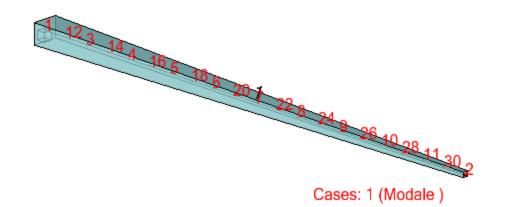
Mode analysis		RSA	AFNOR	Difference %
Mode 1	Frequency (Hz)	16.410	16.456	0.280
	Eigenvector w2/(w7-w2)	1.212	1.213	0.0
Mode 3	Frequency (Hz)	37.941	38.196	0.668
	Eigenvector w2/(w7-w2)	-0.412	-0.412	0.0

Harmonic analysis		RSA	AFNOR	Difference %
Node 2	Displacement UZ (m)	-100.54 e-3	- 9.80 e-2	2.592
Node 7	Displacement UZ (m)	-227.74 e-3	- 2.27 e-1	0.0

Time history analysis		RSA	AFNOR	Difference %
Node 2	Displacement UZ (m) comp.966/1001	-98.90 e-3	- 9.80 e-2	0.918
Node 7	Displacement UZ (m) comp.966/1001	-223.76 e-3	- 2.27 e-1	1.427

CONCLUSION:

Very good agreement of results.



Slender cantilever fixed at both ends with variable rectangular section - SDLL09

Name of the test:	
Reference:	
Codification:	Eigen modes - Slender beam - Tapered section.

SDLL 09 AFNOR

GEOMETRY:

DATA FILE:

SDLL09.rtd

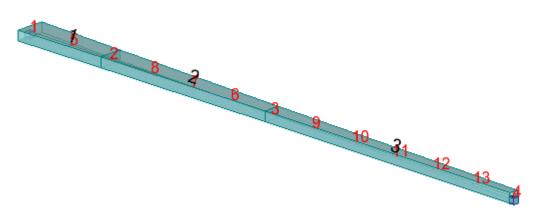
COMPARISON:

Type section	Frequency (Hz)	RSA	AFNOR	Difference %
	Mode 1	54.19	54.18	0.02
	Mode 2	171.69	171.94	0.15
Beta = 4	Mode 3	383.05	384.40	0.35
	Mode 4	692.02	697.24	0.75
	Mode 5	1099.65	1112.28	1.14
	Mode 1	56.56	56.55	0.02
	Mode 2	175.57	175.79	0.13
Beta = 5	Mode 3	387.74	389.01	0.33
	Mode 4	697.21	702.36	0.73
	Mode 5	1105.51	1117.63	1.08

CONCLUSION:

Very good agreement of results.

AUTODESK


Slender beam fixed at both ends with variable rectangular section - SDLL10

 Name of the test:
 SDLL 10

 Reference:
 AFNOR

 Specification:
 Eigen modes - Slender beam - Tapered section - Bending in the plane.

GEOMETRY:

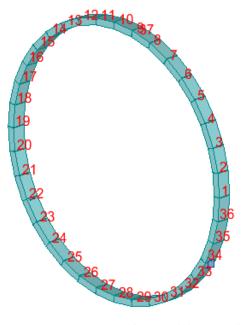
Cases: 1 (Modale)

DATA FILE: SDLL10.rtd

COMPARISON:

Frequency (Hz)	RSA	AFNOR	Difference %
Mode 1	145.355	143.303	1.432
Mode 2	398.951	396.821	0.537
Mode 3	780.806	779.425	0.177
Mode 4	1288.503	1289.577	0.083

CONCLUSION:


Very good agreement of results.

Ring fixed at two points - SDLL12

Name of the test:	
Reference:	
Specification:	Slender ring - Eigen modes - Bending in the plane.

GEOMETRY:

Cases: 1 (Modale)

DATA FILE: SDLL12.rtd

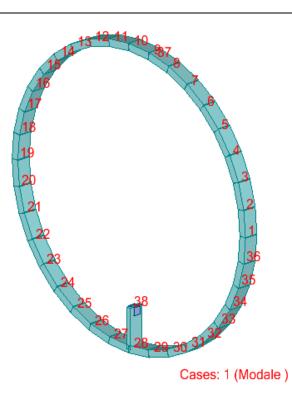
COMPARISON:

Frequency (Hz)	RSA	AFNOR	Difference %
Mode 1	235.888	235.300	0.250
Mode 2	577.053	575.300	0.305
Mode 3	1109.262	1105.700	0.322
Mode 4	1410.008	1405.600	0.314
Mode 5	1755.511	1751.100	0.252
Mode 6	2558.509	2557.000	0.059
Mode 7	2765.514	2801.500	1.285

CONCLUSION:

Very good agreement of results.

Autodesk [and other products] are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2025 Autodesk, Inc. All rights reserved.



SDLL 12 AFNOR

Ring with flexible support at external point - SDLL13

Name of the test:	
Reference:	
Specification:	Slender ring - Eigen modes - Bending in the plane.

GEOMETRY:

DATA FILE: SDLL13.rtd

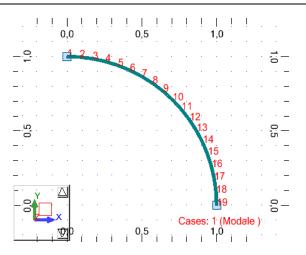
COMPARISON:

Frequency (Hz)	RSA	AFNOR	Difference %
Mode 1	28.814	28.800	0.049
Mode 2	189.799	189.300	0.264
Mode 3	269.497	268.800	0.259
Mode 4	640.999	641.000	0.0
Mode 5	684.410	682.000	0.353
Mode 6	1065.192	1063.000	0.206

CONCLUSION:

Excellent agreement of results.

66


Autodesk® Robot Structural Analysis Verification Manual - Comparison with AFNOR benchmarks

Eigenmode of a thin-walled tube section - SDLL14

Name of the test: Reference:		SDLL 14 AFNOR
Specification:	Eigen modes - Slender curved beam - Bending in the plane - bending.	Transversal

GEOMETRY:

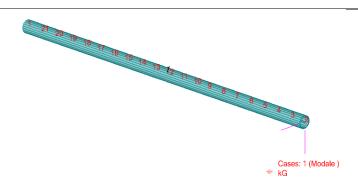
DATA FILE: SDLL14a.rtd; SDLL14b.rtd ; SDLL14c.rtd

COMPARISON:

Ca	ise	Frequency (Hz)	RSA	AFNOR	Difference %
		Mode 1	44.178	44.230	0.118
L=0	а	Mode 2	119.675	119.000	0.567
L=0	a	Mode 3	126.058	125.000	0.846
		Mode 4	226.490	227.000	0.225
	_=0.6 b	Mode 1	33.240	33.400	0.479
1-06		Mode 2	94.227	94.000	0.241
L=0.0		Mode 3	98.955	100.000	1.045
		Mode 4	183.372	180.000	1.873
	L=2 c	Mode 1	17.660	17.900	1.341
1-2		Mode 2	24.432	24.800	1.484
L=Z		Mode 3	24.949	25.300	1.387
		Mode 4	26.723	27.000	1.026

CONCLUSION:

Very good agreement of results.



Slender cantilever with mass eccentricity at the end of it - SDLL15

Name of the test:SDLL 15Reference:AFNORSpecification:Eigen modes - Slender beam - Bending and torsion - Bending in the plane -
Transversal bending - Mass at the end of the cantilever.

GEOMETRY:

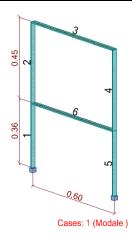
DATA FILE: SDLL15a.rtd; SDLL15b.rtd;

COMPARISON:

Case	9	Frequency (Hz)	RSA	AFNOR	Difference %
		Flexion 1, 2	1.655	1.650	0.303
		Flexion 3, 4	16.055	16.070	0.093
V-0	Yc=0 a	Flexion 5, 6	49.866	50.020	0.308
rc=0		Traction 1	76.473	76.470	0.0
	Torsion 1	80.469	80.470	0.0	
		Flexion 9, 10	102.512	103.20	0.667

Cas	e	Frequency (Hz)	RSA	AFNOR	Difference %
		Flexion x,z + torsion 1	1.636	1.636	0.0
		Flexion x,y + traction 2	1.642	1.642	0.0
		Flexion x,y + traction 3	13.446	13.460	0.104
Yc=1	b	Flexion x,z + torsion 4	13.587	13.590	0.022
TC=T	D	Flexion x,z + torsion 5	28.847	28.900	0.183
		Flexion x,y + traction 6	31.929	31.960	0.097
		Flexion x,z + torsion 7	61.291	61.610	0.518
		Flexion x,y + traction 8	63.737	63.930	0.302

CONCLUSION:


Autodesk® Robot Structural Analysis Verification Manual - Comparison with AFNOR benchmarks

Excellent agreement of results.

Symmetrical frame bending - SDLX01

Name of the test:	
Reference:	
Specification:	Slender beam - Bending in the plane - Eigen modes.

GEOMETRY:

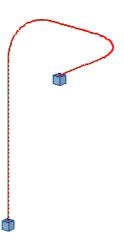
COMPARISON:

Frequency (Hz)	RSA	AFNOR	Difference %
Mode 1	8.75	8.80	0.57
Mode 2	29.35	29.40	0.17
Mode 3	43.71	43.80	0.21
Mode 4	56.12	56.30	0.32
Mode 5	95.87	96.20	0.34
Mode 6	102.37	102.60	0.22
Mode 7	146.63	147.10	0.32
Mode 8	174.38	174.80	0.24
Mode 9	178.34	178.80	0.26
Mode 10	205.56	206.00	0.21
Mode 11	265.80	266.40	0.23
Mode 12	319.35	320.00	0.20
Mode 13	334.45	335.00	0.16

CONCLUSION:

Excellent agreement of results.

Autodesk [and other products] are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2025 Autodesk, Inc. All rights reserved.



SDLX 01 AFNOR

Hovgaard's problem - stress in the 3D pipe - bending - SDLX02

Name of the test:SDLX 02Reference:AFNORSpecification:Eigen modes - Bending in the plane - Transversal bending - Slender curved beam.

GEOMETRY:

Cases: 1 (Modale)

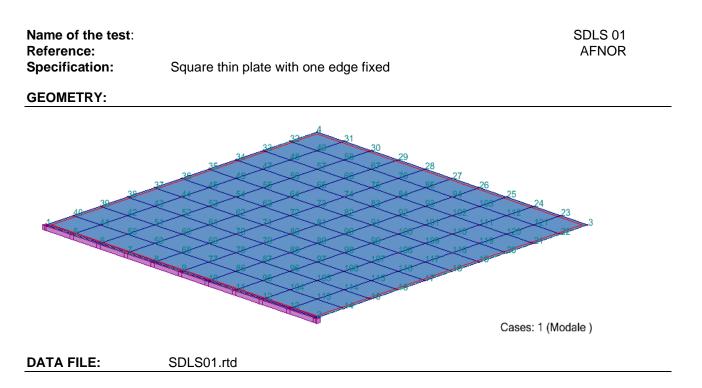
DATA FILE: SDLX02.rtd

COMPARISON:

Frequency (Hz)	RSA	AFNOR	Difference %
Mode 1	10.25	10.18	0.69
Mode 2	19.96	19.54	2.15
Mode 3	25.08	25.47	1.53
Mode 4	47.71	48.09	0.79
Mode 5	52.35	52.86	0.96
Mode 6	84.26	75.94	10.96
Mode 7	86.51	80.11	7.99
Mode 8	126.57	122.34	3.46
Mode 9	130.86	123.15	6.26

CONCLUSION:

5 first modes give correct results.


Autodesk® Robot Structural Analysis Verification Manual - Comparison with AFNOR benchmarks

2. PLATES/SHELLS STRUCTURES

AUTODESK

Cantilever plate - SDLS01

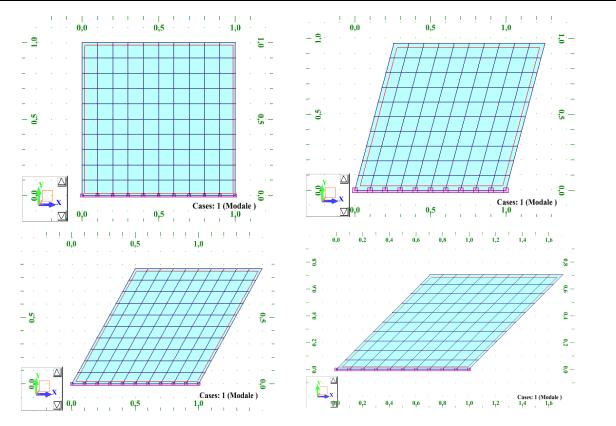
COMPARISON:

Frequency (Hz)	RSA	AFNOR	Difference %
Mode 1	8.6655	8.7266	0.700
Mode 2	21.2450	21.3042	0.278
Mode 3	53.6890	53.5542	0.252
Mode 4	68.5652	68.2984	0.391
Mode 5	77.9989	77.7448	0.327
Mode 6	137.1204	136.0471	0.789

CONCLUSION:

Excellent agreement of results.

Lozenge - shaped thin plate with one edge fixed - SDLS02


SDLS 02

AFNOR

Name of the test: Reference: Specification:

Lozenge - shaped thin plate with one edge fixed

GEOMETRY:

DATA FILE: SDLS02a.rtd; SDLS02b.rtd; SDLS02c.rtd; SDLS02d.rtd

COMPARISON:

ALPHA [deg]	Case	Frequency (Hz)	RSA	AFNOR	Differen ce %
0	0	Mode 1	8.6655	8.7266	0.700
0	а	Mode 2	21.2450	21.3042	0.278
	Mode 1	8.9422	8.9990	0.631	
15	b	Mode 2	21.7167	22.1714	2.051
20		Mode 1	9.7945	9.8987	1.053
30	С	Mode 2	23.4749	25.4651	7.815
45	d	Mode 1	11.29	11.15	1.256
45	d	Mode 2	27.52	27.00	1.925

CONCLUSION:

According to "Guide de ..." accuracy of AFNOR is 3%, but for higher mode numbers it can be less accurate.

Simply supported rectangular thin plate - SDLS03 Name of the test: Reference: Specification: Simply supported rectangular thin plate GEOMETRY:

Cases: 1 (Modale)

DATA FILE: SDLS03.rtd

COMPARISON:

Frequency (Hz)	RSA	AFNOR	Differen ce %
Mode 1	35.72	35.63	0.25
Mode 2	68.84	68.51	0.47
Mode 3	110.85	109.62	1.12
Mode 4	124.63	123.32	1.06
Mode 5	143.99	142.51	1.04
Mode 6	199.84	197.32	1.27

CONCLUSION:

Very good agreement of results.

Circular plate with fixed inner edge - SDLS04

Name of the test: Reference:		SDLS 04 AFNOR
Specification:	Circular plate fixed at inner edge	
GEOMETRY:		

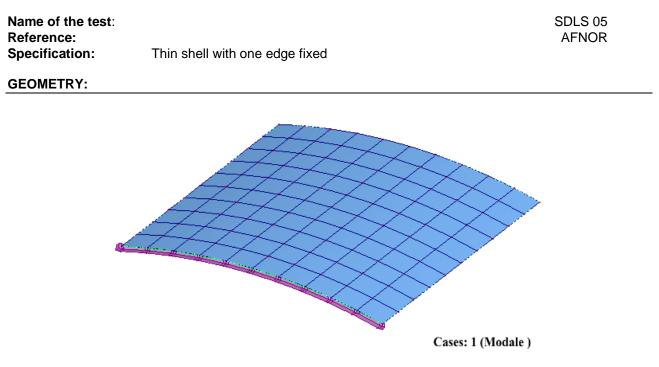
Cases: 1 (Modale)

DATA FILE: SDLS04.rtd

COMPARISON:

Mode	Frequen	cy fij (Hz)	RSA	AFNOR	Differenc e %
1	i=0	j=0	79.48	79.26	0.28
2 and 3	i=1	j=0	80.98, 81.12	81.09	0.14
4 and 5	i=2	j=0	89.57, 89.62	89.63	0.06
6 and 7	i=3	j=0	113.23	112.79	0.39
18	i=0	j=1	526.08	518.85	1.39
19 and 20	i=1	j=1	533.34, 540.67	528.61	2.28
21 and 22	i=2	j=1	567.26, 570.80	559.09	2.09
23 and 24	i=3	j=1	621.91, 622.91	609.7	2.17

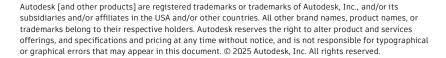
i = number of nodal diameters


j = number of nodal circles

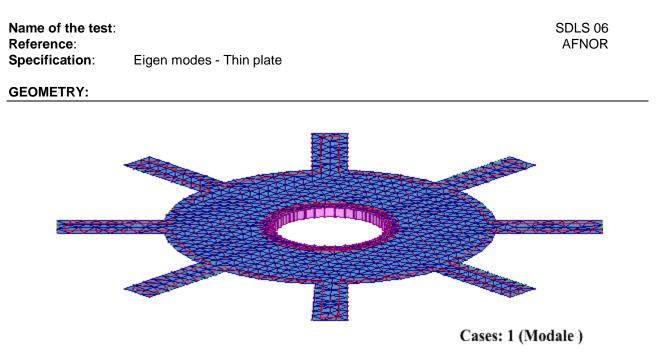
CONCLUSION:

Very good agreement of results.

Compressor blade: thin shell - SDLS05


SDLS05.rtd

COMPARISON:


Frequency (Hz)	RSA	AFNOR	Differen ce %
Mode 1	86.12	85.60	0.61
Mode 2	138.47	134.50	2.95
Mode 3	250.00	259.00	3.47
Mode 4	346.52	351.00	1.28
Mode 5	389.68	395.00	1.35
Mode 6	547.34	531.00	3.08

CONCLUSION:

According to "Guide de..." accuracy of AFNOR is 3%, but for the higher modes it is less precise.

Modal analysis of plate - SDLS06

DATA FILE: SDLS06.rtd

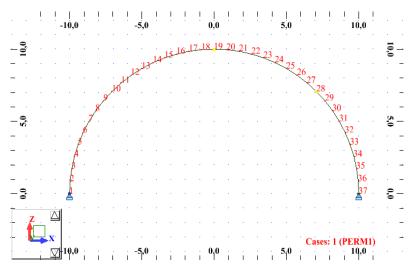
COMPARISON:

Mode	Freque	Difference	
Mode	RSA	AFNOR	%
	286.91	295.10	2.85
	370.74	361.10	2.60
_ .	399.97	390.50	2.43
Torsion Flexion	969.81	971.00	0.12
	1671.14	1663.00	0.49
	2178.83	2189.00	0.46
	2598.50	2627.00	1.08

CONCLUSION:

Good agreement of results.

THERMOMECHANICAL ANALYSIS 1. BAR STRUCTURES


AUTODESK

Arch with 2 pinned supports - HSLL01

HSLL 01 AFNOR

Name of the test:	
Reference:	
Specification:	Thin-walled arch - Temperature gradient - Pinned supports.

GEOMETRY:

HSLL01.rtd

COMPARISON:

Position	Value type	RSA	AFNOR	Difference %
	Bending moment(Nm)	0	0	0.0
Alpha=90 Node 37	Normal force (N)	-209.397	0	
Node er	Shear force (N)	-4790.303	-4792.000	0.035
	Bending moment (Nm)	33905.060	33883.000	0.065
Alpha=45 Node 28	Normal Force (N)	-3239.121	-3388.000	4.394
11000 20	Shear force (N)	-3535.385	-3388.000	4.350
Alpha=0 Node 19	Bending moment (Nm)	47948.778	47918.000	0.064
	Normal Force(N)	-4790.303	-4792.000	0.035
	Shear force (N)	-209.397	0	

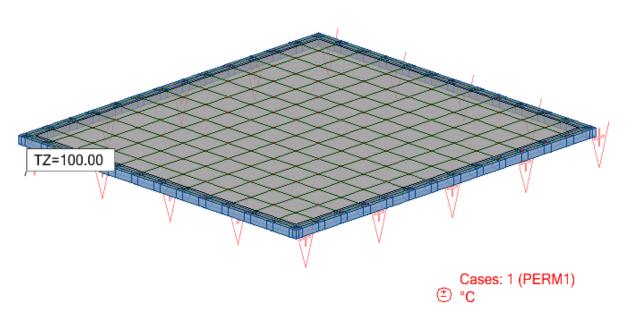
CONCLUSIONS:

Results correct.

The results have been obtained from the average of forces from 2 bars met in a node. Normal force (shear force) for alpha=90° (alpha=0°) is not equal to 0 because the arch consists of linear segments.

Nevertheless the value is still reliable.

2. PLATES/SHELLS STRUCTURES


AUTODESK

Thin plate deformed according to spherical curve - HSLS01

HSLS 01 AFNOR

Name of the test:	
Reference:	
Specification:	Thin plate - Thermal gradient - Fixed support.

GEOMETRY:

DATA FILE HSLS01.rtd

COMPARISON:

Position	Type of the value	RSA	AFNOR	Differen ce %
On the edges	Bending moment (Nm/m)	2380.95	2380.95	0.0
On the edges	Maximum stress (Pa)	142.857 e+6	142.185 e+6	0.47

CONCLUSION:

Excellent agreement of results.

CONCLUSIONS

The results and accuracy achieved in verification examples confirm the quality and reliability of ROBOT Structural Analysis 2021. This state-of-the-art structural analysis and design software gives excellent accuracy within the applied solution method.