Robot Structural Analysis Professional

AUTODESK

Comparison with NAFEMS Benchmarks

- Linear Static Benchmarks vol. 1. (Ref: LSB 1)
- Selected Benchmarks for Forced Vibration (Ref: R0016)
- Background to FE Analysis of Geometric Non-linearity Benchmarks (Ref: R0065)

Table of Contents

INTRODUCTION	1
SHELL LINEAR STATIC ANALYSIS VERIFICATION EXAMPLES	2
TEST IC1: Tapered Membrane End Load	2
TEST IC2: Tapered Membrane Gravity Loading	3
TEST IC3: Tapered Membrane Edge Shear	4
TEST IC4: Tapered Cantilever Gravity Load	5
TEST IC6: Circular Membrane Point Load	8
TEST IC10: Tapered Plate Edge Shear	9
TEST IC11: Tapered Plate Gravity Load	11
TEST IC13: Skew Plate Normal Pressure	13
TEST IC17: Hemisphere External Pressure	
TEST IC18: Hemisphere Point Loads	15
TEST IC19: Cylindrical Shell Edge Moment	16
TEST IC20: Cylindrical Shell Pressure Load	
TEST IC21: Cylindrical Shell Edge Moment	18
TEST IC29: Z-Section Cantilever Torsion Bending	19
TEST IC30: Z-Section Cantilever Beam Bending	20
DYNAMIC ANALYSIS VERIFICATION EXAMPLES	
Number 5 TESTS: Vibrations of a Deep Beam	
Results Comparison of Modal Analysis (5)	
Results Comparison of Harmonic Forced Vibration (5H) Results Comparison of Periodic Forced Vibration (5P)	
Results Comparison of Impulse Forced Vibration (57)	
Number 13 TESTS: Vibrations of Simply Supported Thin Plate	
Results Comparison of Modal Analysis (13)	
Results Comparison of Harmonic Forced Vibration (13H)	
Results Comparison of Periodic Forced Vibration (13P)	
Results Comparison of Impulse Forced Vibration (13T) Number 21 TESTS: Vibrations of Simply Supported Thick Plate	
Results Comparison of Modal Analysis (21)	
Results Comparison of Harmonic Forced Vibration (21H)	
Results Comparison of Periodic Forced Vibration (21P)	29
Results Comparison of Impulse Forced Vibration (21T)	
LARGE ROTATION AND DISPLACEMENT VERIFICATION EXAMPLES	
TEST GNL-5: Large rotations and displacements of a straight cantilever	
CONCLUSIONS	

Introduction

This report contains a range of static and dynamic benchmark tests covering a few types of behaviour encountered in structural analysis.

These examples have been taken from:

- "Linear Static Benchmarks vol.1" signed by NAFEMS as LSB1
- "Selected Benchmarks for Forced Vibration" signed by NAFEMS as R0016
- "Background to FE Analysis of Geometric Non-Linearity Benchmarks" signed by NAFEMS as R0065

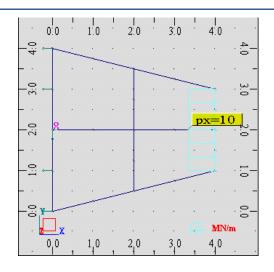
Benchmark results (signed as "NAFEMS") are recalled and compared with results of Robot Structural Analysis Professional.

Each problem contains the following parts:

- the name of the benchmark as used in NAFEMS manual,
- short problem description,
- scheme of the model,
- comparison between Robot Structural Analysis Professional results and reference values.

1

Shell Linear Static Analysis Verification Examples


TEST IC1: Tapered Membrane End Load

Name of the Test:	IC1

Reference: NAFEMS LSB1

Specification: Linear static analysis of an elastic membrane.

GEOMETRY: Thickness = 0.1 m

DATA DEFINITION:

Loading:	Uniformly distributed horizontal load of 10 MN/m (pressure of 100 Mpa) along outer edge.
Boundary Conditions:	Nodes on X=0.0 – blocked UX, UZ, RY, node (0.0, 2.0) - fully clamped.
Material Properties:	Isotropic, E=210e3 MPa, ni=0.3
Element Type:	Shell 4-node quadrilaterals
Data File:	StaticLinear.TaperedMembraneEndLoad.Skyline.Nafems_IC01.rtd

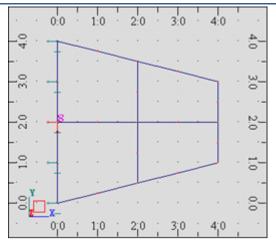
RESULTS COMPARISON:

	Direct Stress Sxx at Point No.8 (0.0, 2.0)		
Mesh Refinement	TARGET	Robot Structural	Difference
2x2	61.3	80.64	31.55%
4x4	61.3	68.08	11.06%
8x8	61.3	62.61	2.14%
16x16	61.3	61.62	0.52%
32x32	61.3	61.41	0.18%

TARGET: 61.3 MPa

TEST IC2: Tapered Membrane Gravity Loading

Name of the Test: IC2


Reference:

Specification:

NAFEMS LSB1

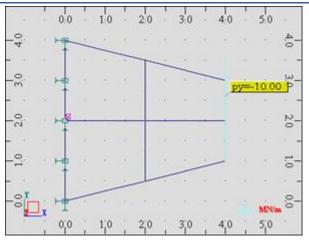
Linear static analysis of an elastic membrane

GEOMETRY: Thickness = 0.1 m

DATA DEFINITION:

Loading:	Uniform acceleration 9.81 m/s2 in global X direction (gravity).		
Boundary Conditions:	Nodes on X=0.0 – blocked UX, UZ, RY, node (0.0, 2.0) - fully clamped.		
Material Properties:	Isotropic, E=210e3 MPa, ni=0.3, p=7 MG/m3		
Element Type:	Shell 4-node quadrilaterals		
Data File:	$Static Linear. Tapered {\tt Membrane. Gravity Load. Skyline. {\tt NAFEMS_ICO2. rtd} }$		

RESULTS COMPARISON:


	Direct Stress Sxx at Point No.8 (0.0, 2.0)		
Mesh Refinement	TARGET	Robot Structural	Difference
2x2	0.247	0.2084	15.63%
4x4	0.247	0.229	7.29%
8x8	0.247	0.2321	6.03%
16x16	0.247	0.2387	3.36%
32x32	0.247	0.2427	1.74%

TARGET: 0.247 MPa

TEST IC3: Tapered Membrane Edge Shear

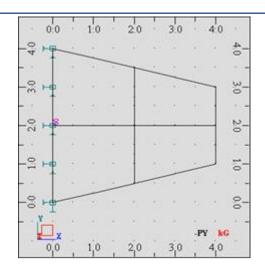
Name of the Test:	IC3
Reference:	NAFEMS LSB1
Specification:	Linear static analysis of an elastic membrane

GEOMETRY: Thickness = 0.1 m

DATA DEFINITION:

bading:	Uniform surface shear traction of 100 Mpa in the vertical Y- direction.
oundary Condition:	Edge X=0.0 – fully fixed.
aterial Properties:	Isotropic, E=210e3 MPa, ni=0.3
ement Type:	Shell 4-node quadrilaterals
ata File:	$Static Linear. Tapered {\tt Membrane}. {\tt EdgeShear}. Skyline. {\tt NAFEMS_ICO3}. {\tt rtd}$
oundary Condition: aterial Properties: ement Type:	Edge X=0.0 – fully fixed. Isotropic, E=210e3 MPa, ni=0.3 Shell 4-node quadrilaterals

RESULTS COMPARISON:


	Direct Stress Sxy at Point No.8 (0.0, 2.0)		
Mesh Refinement	TARGET	Robot Structural	Difference
2x2	26.9	35.15	30.67%
4x4	26.9	33.53	24.65%
8x8	26.9	30.82	14.57%
16x16	26.9	28.95	7.62%
32x32	26.9	27.91	3.75%

TARGET: 26.9 MPa

TEST IC4: Tapered Cantilever Gravity Load

Name of the Test:	IC4
Reference:	NAFEMS LSB1
Specification:	Linear static analysis of an elastic plate

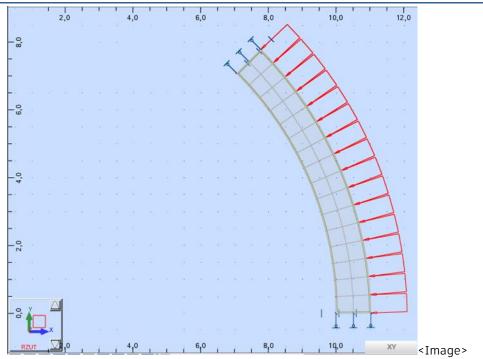
GEOMETRY: Thickness = 0.1 m

DATA DEFINITION:

Loading:	Uniform acceleration 9.81 m/s2 in the vertical Y direction (gravity).		
Boundary Condition:	Edge X=0.0 – fully fixed.		
Material Properties:	Isotropic, E=210e3 MPa, ni=0.3, p=7 MG/m3		
Element Type:	Shell 4-node quadrilaterals		
Data File:	$Static {\tt Linear}. Tapered {\tt Cantilever}. Gravity {\tt Load}. Sky {\tt line}. {\tt NAFEMS_ICO4}. rtd {\tt line}. {\tt li$		
21			

RESULTS COMPARISON:

	Direct Stress Sxy at Point No.8 (0.0, 2.0)		
Mesh Refinement	TARGET	Robot Structural	Difference
2x2	0.2	0.1304	34.80%
4x4	0.2	0.1677	16.65%
8x8	0.2	0.1831	8.45%
16x16	0.2	0.1913	4.35%


32x32 0.2	0.1953	2.35%
-----------	--------	-------

TARGET: 0.2000 MPa

TEST IC5: Circular Membrane Edge Pressure	
Name of the Test:	IC5
Reference:	NAFEMS LSB1
Specification:	Linear static analysis of an elastic plate

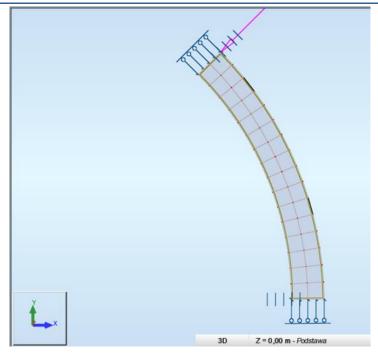
GEOMETRY: Thickness = 1 m

DATA DEFINITION:

Loading:	Uniform inward pressure of 100MPa at outer arc edge. Inner arc edge unloaded
Boundary Condition:	Linear edges on rollers with zero hoop displacement – perpendicular directions fixed, rotations.
Material Properties:	Isotropic, E=210e3 MPa, ni=0.3
Element Type:	shell 4-node quadrilaterals
Data File:	${\tt StaticLinear.CircularMembrane.EdgePressure.Skyline.NAFEMS_IC05.rtd}$

RESULTS COMPARISON:

	Direct Str	ess Syy at Point No.2 (10.0, (D.O) [MPa]
Mesh Refinement	TARGET	Robot Structural	Difference
16x2	1150	1197.19	4.10%


TARGET: 1150 MPa

TEST IC6: Circular Membrane Point Load

Name of the Test:	IC6
Reference:	NAFEMS LSB1
Specification:	Linear static analysis of an elastic plate

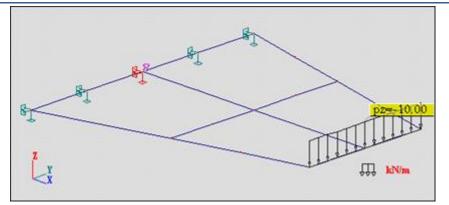
GEOMETRY: Thickness = 1 m

DATA DEFINITION:

Loading:	Point load of 5000kN radially at point B.
Boundary Condition:	Linear edges on rollers with zero hoop displacement – perpendicular directions fixed, rotations.
Material Properties:	Isotropic, E=210e3 MPa, ni=0.3
Element Type:	shell 4-node quadrilaterals
Data File:	ShellLinearStaticAnalysis.Nafems_IC06.rtd

RESULTS COMPARISON:

	Direct Str	ess Syy at Point No.2 (10.0, (D.O) [MPa]
Mesh Refinement	TARGET	Robot Structural	Difference
16x2	-53.2	-61.43	15.47%


8

TARGET: -53.2 MPa

TEST IC10: Tapered Plate Edge Shear

Name of the Test:	IC10
Reference:	NAFEMS LSB1
Specification:	Linear static analysis of an elastic plate

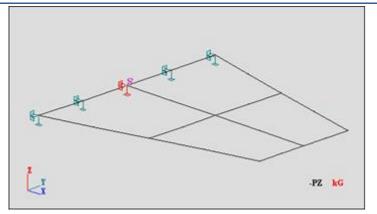
GEOMETRY: Thickness = 0.1 m

DATA DEFINITION:

Loading:	Uniform vertical shear 10 kN/m in the Z direction along outer edge.
Boundary Condition:	Edge X=0.0 - fully fixed.
Material Properties:	Isotropic, E=210e3 MPa, ni=0.3
Element Type:	shell 4-node quadrilaterals
Data File:	StaticLinear.TaperedPlate.EdgeShear.Skyline.NAFEMS_IC10.rtd

RESULTS COMPARISON:

	Direct Stress	Sxx on Top Surface Point N	o.8 (0.0, 2.0)
Mesh Refinement	TARGET	Robot Structural	Difference
2x2	14.7	14.75	0.34%
4x4	14.7	14.755	0.37%
8x8	14.7	14.667	0.22%
16x16	14.7	14.636	0.44%
32x32	14.7	14.632	0.46%


TARGET: 14.7 MPa

TEST IC11: Tapered Plate Gravity Load

Name of the Test:	IC11
Reference:	NAFEMS LSB1
Specification:	Linear static analysis of an elastic plate

GEOMETRY: Thickness = 0.1 m

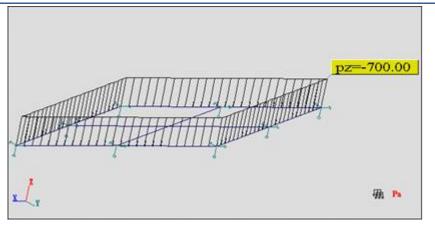
DATA DEFINITION:

Loading:	Uniform acceleration 9.81 m/s2 in the vertical Z direction (gravity).
Boundary Condition:	Edge X=0.0 - fully fixed.
Material Properties:	Isotropic, E=210e3 MPa, ni=0.3, p=7 MG/m3
Element Type:	shell 4-node quadrilaterals
Data File:	StaticLinear.TaperedPlate.GravityLoad.Skyline.NAFEMS_IC11.rtd

RESULTS COMPARISON:

	Direct Stress Sxx on Top Surface Point No.8 (0.0, 2.0)		
Mesh Refinement	TARGET	Robot Structural	Difference
2x2	26	24.513	5.72%
4x4	26	26.199	0.77%
8x8	26	25.963	0.14%
16x16	26	25.885	0.44%
32x32	26	25.869	0.50%

TARGET: 26 MPa


11

TEST IC13: Skew Plate Normal Pressure

Name of the Test:	IC13
Reference:	NAFEMS LSB1
Specification:	Linear static analysis of an elastic plate

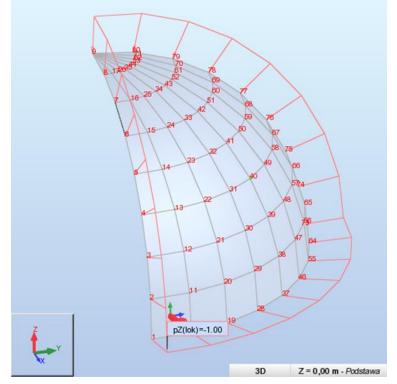
GEOMETRY: Thickness = 0.01 m

DATA DEFINITION:

Loading:	Normal pressure –0.7 kPa in the vertical Z direction.
Boundary Condition:	Simple supports (no z-displacement) for all edges.
Material Properties:	Isotropic, E=210e3 MPa, ni=0.3
Element Type:	shell 4-node quadrilaterals
Data File:	${\tt StaticLinear.SkewPlate.NormalPressure.Skyline.NAFEMS_IC13.rtd}$

RESULTS COMPARISON:

	Maximum Principal Stress on Lower Surface at the Plate Center		
Mesh Refinement	TARGET	Robot Structural	Difference
4x4	0.802	0.998	24.44%
8x8	0.802	0.872	8.73%
16x16	0.802	0.833	3.87%
32x32	0.802	0.818	2.00%


TARGET: 0.802 MPa

TEST IC17: Hemisphere External Pressure

Name of the Test:	IC17
Reference:	NAFEMS LSB1
Specification:	Linear elastic thin shell

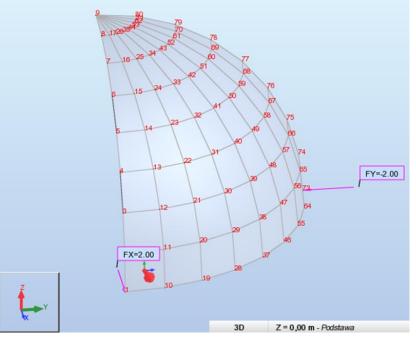
GEOMETRY: Thickness = 0.4 m

DATA DEFINITION:	
Loading:	Uniform pressure of 1kPa directed radially inwards.
Boundary Condition:	Edge in XY, zero z-displacements, edge in YZ, zero x-displacements or rotations about y and z axes, edge in XZ, zero y-displacements or rotations about x and z axes.
Material Properties:	Isotropic, E=68250 MPa, ni=0.3
Element Type:	shell 4-node quadrilaterals
Data File:	${\tt StaticLinear.Hemisphere.External Pressure.Skyline.NAFEMS_IC17.rtd}$

RESULTS COMPARISON:

	Radial Displacement at Point No. 40 (5.88, 5.88, 5.56) [mm]		
Mesh Refinement	TARGET	Robot Structural	Difference
8x8	0.001282	0.001262	1.56%

14



TARGET: -1.282x10^-3 mm

TEST IC18: Hemisphere Point Loads

Name of the Test:	IC18
Reference:	NAFEMS LSB1
Specification:	Linear elastic thin shell

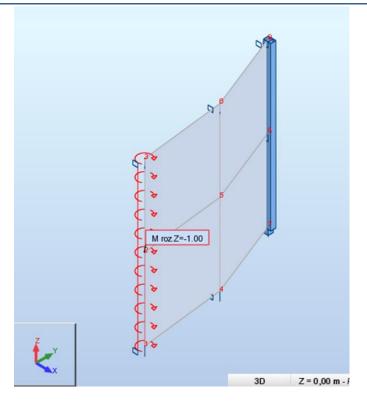
GEOMETRY: Thickness = 0.04 m

DATA DEFINITION:

Loading:	Two concentrated radial loads of 2kN directed outwards and inwards.
Boundary Condition:	Point 9(0, 0, 10) fully fixed, edge in YZ, zero x-displacements or rotations about y and z axes, edge in XZ, zero y-displacements or rotations about x and z axes.
Material Properties:	Isotropic, E=68250 MPa, ni=0.3
Element Type:	shell 4-node quadrilaterals
Data File:	StaticLinear.Hemisphere.PointLoad.Skyline.NAFEMS_IC18.rtd

RESULTS COMPARISON:

	x - Displacement at Point No. 1 (10, 0, 0) [mm]		
Mesh Refinement	TARGET	Robot Structural	Difference


8x8	185	176.7	4.49%
-----	-----	-------	-------

TARGET: 0.185 m

TEST IC19: Cylindrical Shell Edge Moment

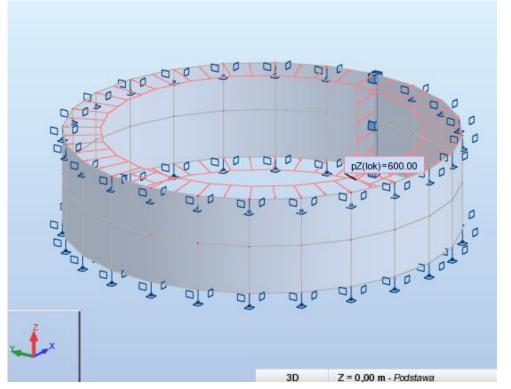
Name of the Test:	IC19
Reference:	NAFEMS LSB1
Specification:	Linear elastic thin shell

GEOMETRY: Thickness = 0.01 m

DATA DEFINITION:

Loading:	Uniform normal edge moment on edge DC of 1kN/m.
Boundary Condition:	Edge AB, all translations and rotations zero, edge AD and BC symmetry, z- translation and rotations about the edges are zero.
Material Properties:	Isotropic, E=210000 MPa, ni=0.3
Element Type:	shell 4-node quadrilaterals
Data File:	StaticLinear.Cylinder.EdgeMoment.Skyline.NAFEMS_IC19.rtd

RESULTS COMPARISON:


	Outer Layer Tangential Stress at Point No. 5 [MPa]		
Mesh Refinement	TARGET	Robot Structural	Difference
2x2	60	60.017	0.03%

TARGET: 60 MPa

TEST IC20: Cylindrical Shell Pressure Load

Name of the Test:	IC20
Reference:	NAFEMS LSB1
Specification:	Linear elastic thin shell

GEOMETRY: Thickness = 0.01 m

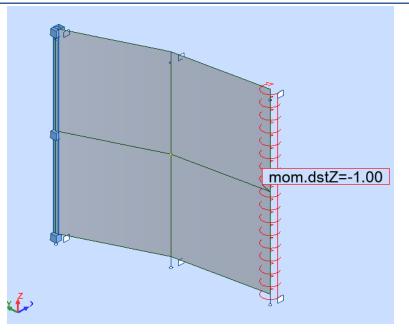
DATA DEFINITION:

Loading:	Uniform outward normal pressure of 0.6MPa.
Boundary Condition:	Edge AB, all translations and rotations zero, edge AD and BC symmetry, z- translation and rotations about the edges are zero.
Material Properties:	Isotropic, E=210000 MPa, ni=0.3
Element Type:	shell 4-node quadrilaterals
Data File:	StaticLinear.Cylinder.PressureLoad.Skyline.NAFEMS_IC20.rtd

Autodesk [and other products] are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2024 Autodesk, Inc. All rights reserved.

17

RESULTS COMPARISON:


	Outer Layer Tangential Stress at Point No. 5 [MPa]		
Mesh Refinement	TARGET	Robot Structural	Difference
2x2	60	59.487	0.85%

TARGET: Text

TEST IC21: Cylindrical Shell Edge Moment

Name of the Test:	IC21
Reference:	NAFEMS LSB1
Specification:	Linear elastic thin shell

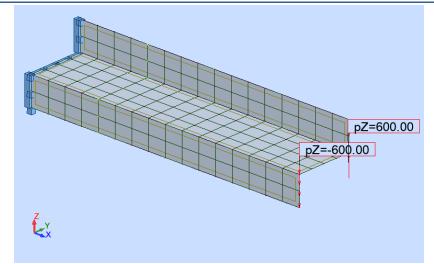
GEOMETRY: Thickness = 0.01 m

DATA DEFINITION:

Loading:	Uniform normal edge moment on edge DC of 1kN/m.
Boundary Condition:	Edge AB, all translations and rotations zero, edge AD and BC symmetry, z- translation and rotations about the edges are zero.
Material Properties:	Isotropic, E=210000 MPa, ni=0.3
Element Type:	shell 4-node quadrilaterals

Data File: StaticLinear.Cylinder.EdgeMoment.Skyline.NAFEMS_IC21.rtd

RESULTS COMPARISON:


	Outer Layer Tangential Stress at Point No. 5 [MPa]		
Mesh Refinement	TARGET	Robot Structural	Difference
2x2	60	60.017	0.03%

TARGET: 60 MPa

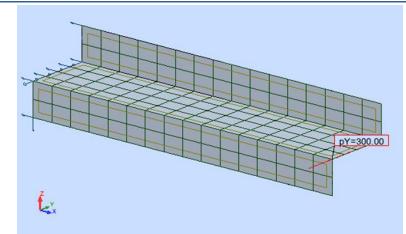
TEST IC29: Z-Section Cantilever Torsion Bending

Name of the Test:	IC29
Reference:	NAFEMS LSB1
Specification:	Linear static analysis of an elastic shell

GEOMETRY: Thickness = 0.1 m

DATA DEFINITION:

Loading:	Torque of 1.2 MNm at end x=10, by two uniformly distributes edge shears, S=0.6 MN/m at each flange.
Boundary Condition:	At edge x=0 all displacements are zero.
Material Properties:	Isotropic, E=210e3 MPa, ni=0.3
Element Type:	Shell 4-node quadrilaterals
Data File:	$StaticLinear. ZSection Cantilever. Torsion. Skyline. NAFEMS_IC29. rtd$


RESULTS COMPARISON:

	Direct St	ress Sxx at Mid Surface	in 1/4 of the Length of	the Beam
Point	TARGET	NAFEMS	Robot Structural	Difference
1	-108.8	-110.1	-112.6	3.50%
2	-36.26	-36.9	-36.6	1.05%
3	36.26	36.2	37.8	4.19%
4	36.26	37.3	36.9	1.85%
5	36.26	36.2	37.8	4.19%
6	-36.26	-36.9	-36.6	1.05%
7	-108.8	-110.1	-112.6	3.50%

TEST IC30: Z-Section Cantilever Beam Bending

Name of the Test:	IC30
Reference:	NAFEMS LSB1
Specification:	Linear static analysis of an elastic shell

GEOMETRY: Thickness = 0.1 m

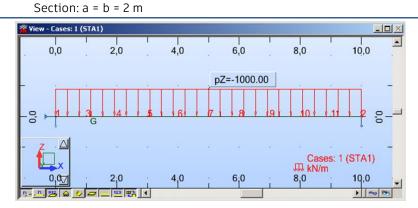
DATA DEFINITION:

Loading:	Shear force S=0.6 MN as a uniformly distributed edge shear on the central web.
Boundary Condition:	At edge x=0 all x-displacements are zero. y-displacements are zero at the origin, z-displacements are zero at the corners of the two flanges at (0,-1,-1) and (0,1,1)
Material Properties: Element Type:	Isotropic, E=210e3 MPa, ni=0.3 Shell 4-node quadrilaterals

Data File:

StaticLinear.ZSectionCantilever.Bending.Skyline.NAFEMS_IC30.rtd

	Direct Stress Sxx at Mid Surface in 1/4 of the Length of the Beam			
Point	TARGET	NAFEMS	Robot Structural	Difference
1	193	191	201.36	4.33%
2	-96.5	-96.7	-97.15	0.67%
3	-386	-383	-391.23	1.35%
4	0	0	0	0.00%
5	386	383	391.23	1.35%
6	96.5	96.7	97.15	0.67%
7	-193	-191	-201.36	4.33%


Dynamic Analysis Verification Examples

Number 5 TESTS: Vibrations of a Deep Beam

Name of the Tests:	5, 5H, 5P, and 5T
Reference:	NAFEMS R0016
Specification:	Dynamic analysis of an elastic beam

GEOMETRY:

Length: L = 10 m

DATA DEFINITION:

Loading:	Uniform load Fo=10 ⁶ [N/m] (Fo=1000 [kN/m])
Boundary Conditions:	X=Y=Z=RX=0 (at the beginning of the beam) Y=Z=0 (at the end of the beam)
Material Properties:	E=200x10 ⁹ N/m ² ; v=0,3; ρ =8000 kg/m ³

Autodesk [and other products] are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2024 Autodesk, Inc. All rights reserved.

21

Element Type:10 beam elements, using attribute: 'Consider shear forces in
deformation calculation' (Timoshenko's Beam – deep beam).Data File:DeepBeamVibration.TimeHistory.Skyline.Decomposition.NAFEMS_05.rtd

Results Comparison of Modal Analysis (5)

Modes	NAFEMS	Robot Structural	Difference
1&2	42.65	42.49	0.38%
3	71.2	71.26	0.08%
4	125	125.11	0.09%
5&6	148.15	143.79	2.94%
7	213.61	215.54	0.90%
8&9	283.47	259.36	8.51%

Output: Frequencies [Hz]

Results Comparison of Harmonic Forced Vibration (5H)

Peak Displacement [mm]			Peak Stress [MPa]		
NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference
13.45	13.43	0.15%	241.9	242.4	0.21%

Forcing Function: F=Fosin(2πft)

Output: Peak Displacement [mm]

Peak Stress [MPa]

Note: Response at the middle node of the beam (node no 7) for the frequency f=20[Hz]

Results Comparison of Periodic Forced Vibration (5P)

Peak Displacement [mm]			Peak Stress [MPa]		
NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference
0.951	0.953	0.21%	17.10	17.39	1.71%

Forcing Function: F=Fo[sin(2*π*ft)-sin(3(2*π*ft))]

Output: Peak Displacement [mm]

Peak Stress [MPa]

Note: Response at the middle node of the beam (node no 7) for the frequency f=20[Hz]

Results Comparison of Impulse Forced Vibration (5T)

Peak Displacement [mm]			At the Time [s]		
NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference

1.043 1.0	047 0.02%	0.0117	0.0117	0.0%
-----------	-----------	--------	--------	------

Peak Stress [MPa]		Peak Stress [MPa] Static Displacement [mm]			וm]
NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference
18.76	18.67	0.21%	0.538	0.535	0.56%

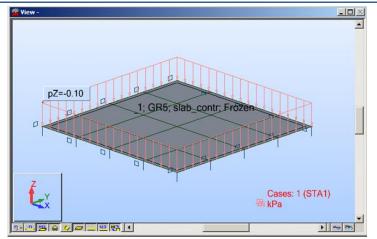
Forcing Function: F=Fo

Output: Peak Displacement [mm] and the corresponding Time [s]

Peak Stress [MPa]

Static Displacement [mm]

Note: Response at the middle node of the beam (node no 7)



Number 13 TESTS: Vibrations of Simply Supported Thin Plate

Name of the Test:	13, 13H, 13P, and 13T
Reference:	NAFEMS R0016
Specification:	Dynamic analysis of an elastic plate

Length: A = B = 10 m

DATA DEFINITION:

Loading:	Uniform planar load Fo=100 [N/m²] (Fo=0,1 [kN/m²])
Boundary Conditions:	X=Y=RZ= 0 (at all nodes - Plate)
	Z=O (at all edges)
	RX=0 (along edges X=0 & X=10 m)
	RY=0 (along edges Y=0 & Y=10 m)
Material Properties:	E=200x10 ⁹ N/m ² ; ν=0,3 ; ρ=8000 kg/m ³
Element Type:	4-node quadrilateral shell elements (three models of mesh considered: 4x4, 8x8, and 16x16 elements)
Data File:	$\label{eq:composition} ThinPlateVibration. TimeHistory. Skyline. Decomposition. NAFEMS_13. rtd$

	,		
		Robot Structural	
Modes	NAFEMS	Meshing 4x4	Difference
1	2.377	2.512	5.68%
2&3	5.942	7.0713	19.01%
4	9.507	11.7394	23.48%
5&6	11.884	16.5599	39.35%
7&8	15.449	21.3135	37.96%

Results Comparison of Modal Analysis (13)

		Robot Structural	
Modes	NAFEMS	Meshing 8x8	Difference
1	2.377	2.41	1.39%
2&3	5.942	6.2159	4.61%
4	9.507	10.0467	5.68%
5&6	11.884	13.2011	11.08%
7&8	15.449	17.0735	10.52%

		Robot Structural	
Modes	NAFEMS	Meshing 16x16	Difference
1	2.377	2.3849	0.33%
2&3	5.942	6.0086	1.12%
4	9.507	9.6378	1.38%
5&6	11.884	12.2013	2.67%
7&8	15.449	15.8396	2.53%

Output: Frequencies [Hz]

Results Comparison of Harmonic Forced Vibration (13H)

	Peak Displacement [mm]		Peak Displacement [mm] Peak Stress [MPa]			
Meshing	NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference
4x4	45.42	44.66	1.67%	30.03	33.20	10.56%
8x8	45.42	45.11	0.68%	30.03	32.23	7.33%
16x16	45.42	45.11	0.68%	30.03	31.90	6.23%

Forcing Function: F=Fosin(2πft) **Output:** Peak Displacement [mm] Peak Stress [MPa]

Note: Response at the center of the plate (node no 1) for the 1^{st} mode frequency f=2.512[Hz] (4x4); f=2.410[Hz] (8x8); f=2.385[Hz] (16x16)

	Peak Displacement [mm]			Pe	eak Stress [MPa]	
Meshing	NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference
4x4	2.863	3.069	7.2%	2.018	2.316	14.7%
8x8	2.863	2.916	1.87%	2.018	2.124	5.25%
16x16	2.863	2.884	0.73%	2.018	2.080	3.07%

Results Comparison of Periodic Forced Vibration (13P)

Forcing Function: $F=Fo[sin(2\pi ft)-sin(3(2\pi ft))]$

Output: Peak Displacement [mm]

Peak Stress [MPa]

Note: Response at the center of the plate (node no 1) for frequency f=1.2[Hz]

Results Comparison of Impulse Forced Vibration (13T)

	Peak Displacement [mm]		Peak Displacement [mm]			At the Time [s]	
Meshing	NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference	
4x4	3.523	3.447	2.16%	0.210	0.200	4.76%	
8x8	3.523	3.476	1.33%	0.210	0.210	0.0%	
16x16	3.523	3.447	2.16%	0.210	0.210	0.0%	

	Peak Stress [MPa]		Static	Displacement [m	ım]	
Meshing	NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference
4x4	2.484	2.502	0,72%	1.817	1.767	2.75%
8x8	2.484	2.441	1.73%	1.817	1.774	2.37%
16x16	2.484	2.344	5.68%	1.817	1.774	2.37%

Forcing Function: F=Fo

Output: Peak Displacement [mm] and the corresponding Time [s]

Peak Stress [MPa]

Static Displacement [mm]

Note: Response at the center of the plate (node no 1)

Number 21 TESTS: Vibrations of Simply Supported Thick Plate

Name of the Test:	21, 21H, 21P, and 21T
Reference:	NAFEMS R0016
Specification:	Dynamic analysis of an elastic plate
GEOMETRY:	Length: A = B = 10 m
	Thickness: t = 1.0 m
	PZ=-1000.00 1; GR100; slab contr; Prozen Cases: 1 (STA1) KPa
DATA DEFINITION:	
Loading: Boundary Conditions:	Uniform planar load Fo=10 ⁶ [N/m ²] (Fo=1000 [kN/m ²]) X=Y=RZ=0 (at all nodes - Plate) Z=0 (at all edges) RX=0 (along edges X=0 & X=10 m) RY=0 (along edges Y=0 & Y=10 m)
Material Properties:	E=200x10 ⁹ N/m ² ; v=0,3 ; ρ=8000 kg/m ³
Element Type:	4-node quadrilateral shell elements (three models of mesh considered: 4x4, 8x8, and 16x16 elements).
Data File:	ThickPlateVibration.TimeHistory.Skyline.Decomposition.NAFEMS_21.rtd

	, , , ,		
		Robot Structural	
Modes	NAFEMS	Meshing 4x4	Difference
1	45.897	48.69	6.09%
2&3	109.44	130.15	18.92%
4	167.89	207.75	23.74%
5&6	204.51	280.50	37.16%
7&8	256.50	351.32	36.97%

Results Comparison of Modal Analysis (21)

		Robot Structural	
Modes	NAFEMS	Meshing 8x8	Difference
1	45.897	46.66	1.66%
2&3	109.44	114.85	4.94%
4	167.89	178.54	6.34%
5&6	204.51	226.70	10.85%
7&8	256.50	284.25	10.82%

		Robot Structural	
Modes	NAFEMS	Meshing 16x16	Difference
1	45.897	46.14	0.53%
2&3	109.44	111.05	1.47%
4	167.89	171.14	1.94%
5&6	204.51	210.78	3.07%
7&8	256.50	264.62	3.17%

Output: Frequencies [Hz]

Results Comparison of Harmonic Forced Vibration (21H)

	Peak Displacement [mm]		Peak Stress [MPa]			
Meshing	NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference
4x4	45.42	44.66	1.67%	30.03	33.20	10.56%
8x8	45.42	45.11	0.68%	30.03	32.23	7.33%
16x16	45.42	45.11	0.68%	30.03	31.90	6.23%

Forcing Function: F=Fosin(2πft) **Output:** Peak Displacement [mm]

Peak Stress [MPa]

Autodesk [and other products] are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2024 Autodesk, Inc. All rights reserved.

AUTODESK

Note: Response at the center of the plate (node no 1) for the 1st mode frequency f=48.6925[Hz] (4x4); f=46.663[Hz] (8x8); f=46.132[Hz] (16x16)

	Peak Displacement [mm]			Peak Stress [MPa]		
Meshing	NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference
4x4	4.929	6.148	24.73%	67.67	91.51	35.23%
8x8	4.929	5.335	8.24%	67.67	75.18	11.10%
16x16	4.929	5.150	4.48%	67.67	70.94	4.77%

Results Comparison of Periodic Forced Vibration (21P)

Forcing Function: $F=Fo[sin(2\pi ft)-sin(3(2\pi ft))]$

Output: Peak Displacement [mm]

Peak Stress [MPa]

Note: Response at the center of the plate (node no 1) for frequency f=20[Hz]

Results Comparison of Impulse Forced Vibration (21T)

	Peak Displacement [mm]			At the Time [s]		
Meshing	NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference
4x4	4.524	4.54	0.35%	0.0108	0.0104	3.7%
8x8	4.524	4.508	0.35%	0.0108	0.0105	2.78%
16x16	4.524	4.573	1.11%	0.0108	0.0105	2.78%

	Peak Stress [MPa]			Static Displacement [mm]		
Meshing	NAFEMS	Robot Structural	Difference	NAFEMS	Robot Structural	Difference
4x4	62.11	66.04	6.33%	2.333	2.307	0.99%
8x8	62.11	60.80	2.11%	2.333	2.320	0.43%
16x16	62.11	61.56	0.89%	2.333	2.326	0.17%

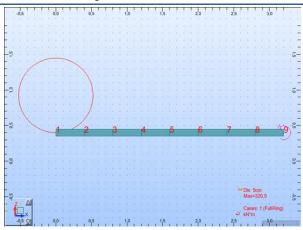
Forcing Function: F=Fo

AUTODESK

Output: Peak Displacement [mm] and the corresponding Time [s]

Peak Stress [MPa]

Static Displacement [mm]

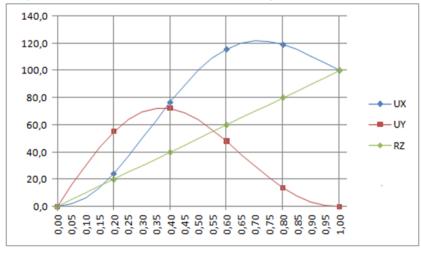

Note: Response at the center of the plate (node no 1)

Large Rotation and Displacement Verification Examples

TEST GNL-5: Large rotations and displacements of a straight cantilever

Name of the Test:	GNL-5
Reference:	NAFEMS R0065
Specification:	Geometric nonlinearity

GEOMETRY:	Length: 3,2 m
	Cross Section: rectangular 0.1x0.1 m


DATA DEFINITION:

Concentrated moment at the end point M = 3 436,1 [kN*m] (applied in 36 equal increments)
Built-in at the begin
$E=210x10^9 \text{ N/m}^2$; v=0,0 (density not considered)
8 beam elements, 40 load increments, analysis P-delta, nonlinear.
${\tt StaticAnalysis.Nonlinear.LargeDisplacements.NAFEMS_GNL5.rtd}$

RESULTS COMPARISON:

The dimensionless value of tip displacements and rotations (UX=100*ux/L, UY=100*uy/L, RZ=100*rz/2* π) are presented on the analytical plot, and summarized in the following table.

Normalized Horizontal Displacement at Tip Versus Normalized Bending Moment					
M/Mmax	Analytical	Robot Structural	Difference		
0.2	24.3	24.2	0.41%		
0.4	76.6	76.5	0.13%		
0.6	115.8	115.7	0.09%		
0.8	118.9	119.2	0.25%		
1	100	100	0.00%		

Normalized Vertical Displacement at Tip Versus Normalized Bending Moment					
M/Mmax	Analytical	Robot Structural	Difference		
0.2	55	55.0	0.07%		
0.4	72	72.3	0.37%		
0.6	48	48.4	0.90%		
0.8	13.7	14.0	2.04%		
1	0	0.0	0.00%		

Normalized Rotations at Tip Versus Normalized Bending Moment					
M/Mmax	Analytical	Robot Structural	Difference		
0	20	20.00	0.00%		
0	40	40.00	0.00%		
0	60	60.00	0.00%		
0	80	80.00	0.00%		

Autodesk [and other products] are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2024 Autodesk, Inc. All rights reserved.

AUTODESK

31

0	100	100.00	0.00%
---	-----	--------	-------

Conclusions

The results and accuracy achieved in the verification examples confirm the quality and reliability of Robot Structural Analysis Professional. This state-of-the-art structural analysis and design software gives sufficient accuracy limited only by the precision of modeling.

