Equation curves are used to model complex geometry, such as gear tooth profiles, or sweep paths for hydraulic pumps. To generate an equation curve, specify the equations to define the curve, and a range to evaluate the equations.
or
2D equation curves support both Cartesian and Polar coordinate systems. The coordinate system is specified in the Equation Curves mini-toolbar.
Polar equation curves specify coordinates as a distance (r) and an angle (a). Parametric equation curves use equations to define r and θ as a function of a variable t. Explicit equation curves use a single equation to define r as a function of a.
Cartesian equation curves use X, Y coordinates. Parametric equation curves use equations to define x and y as a function of a variable t. Explicit equation curves use a single equation to define y as a function of x.
Balance the units in equations. Balancing units in equations often requires multiplying or dividing by 1, or multiple units of length. When the units are not a single unit of length, the equation text is red and an error glyph displays next to the mini-toolbar.
y(t): 4 * sin(1 rad * t) / sqrt(t) * 1 mm
tmin: 0.01
tmax: 6 * PI
xmin: -1 * PI
xmax: 6 * PI
θ(t): cos(t * 1 rad) * 1 rad * 5 * PI / 4
tmin: -5 * PI
tmax: 5 * PI
amin: 0.01
amax: 12 rad * PI
These are examples of formatting that certain operators and functions require.
y(t): 1 mm * t - 1
θ(t): 1 rad * t - 1 rad
r(a): 1 mm * a / 1 rad + 1
y(t): 2 mm / t
θ(t): 2 rad / t
r(a): 3 mm * a / 2 rad
y(t): 1 mm * pow(t;2)
θ(t): 1 rad * pow(t;2)
r(a): 1 mm * ((a / 1 rad)^3)
y(t): 1 mm * tan(1 rad * t)
θ(t): 1 rad * tan(1 rad * t)
r(a): 1 mm * cos(a)
y(t): 1 mm * atan(t) / 1 rad
θ(t): acos(t)
r(a): 1 mm * acos(a / 1 rad) / 1 rad
y(t): 1 mm * tanh(1 rad * t)
θ(t): 1 rad * sinh(1 rad * t)
r(a): 1 mm * cosh(a)
y(t): 1 mm * log(t)
θ(t): 1 rad * ln(t
r(a): 1 mm * ln(a / 1 rad)