This reference page is linked to from the following overview topics: Provides a compact representation for orientation in three space and provides methods to perform Quaternion algebra.
Inheritance diagram for Quat:Public Member Functions | |
| def | Conjugate |
| def | Equals |
| def | Exp |
| def | GetEuler |
| def | GetW |
| def | GetX |
| def | GetY |
| def | GetZ |
| def | Identity |
| def | Inverse |
| def | Invert |
| def | IsIdentity |
| def | LogN |
| def | MakeClosest |
| def | Minus |
| def | Normalize |
| def | Plus |
| def | Scalar |
| def | Set |
| def | SetEuler |
| def | SetW |
| def | SetX |
| def | SetY |
| def | SetZ |
| def | Vector |
Public Member Functions inherited from Wrapper | |
| def | GetUnwrappedPtr |
Public Attributes | |
| this | |
Static Public Attributes | |
| tuple | thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') |
| tuple | W = _swig_property(GetW, SetW) |
| tuple | X = _swig_property(GetX, SetX) |
| tuple | Y = _swig_property(GetY, SetY) |
| tuple | Z = _swig_property(GetZ, SetZ) |
Static Public Attributes inherited from Wrapper | |
| tuple | thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') |
| def Conjugate | ( | self | ) |
Conjugate(Quat self) -> Quat
| def Equals | ( | self, | |
| args | |||
| ) |
Equals(Quat self, Quat a, float epsilon=1E-6) -> bool Equals(Quat self, Quat a) -> bool
| def Exp | ( | self | ) |
Exp(Quat self) -> Quat
| def GetEuler | ( | self, | |
| args | |||
| ) |
GetEuler(Quat self, float * X, float * Y, float * Z)
| def GetW | ( | self | ) |
GetW(Quat self) -> float
| def GetX | ( | self | ) |
GetX(Quat self) -> float
| def GetY | ( | self | ) |
GetY(Quat self) -> float
| def GetZ | ( | self | ) |
GetZ(Quat self) -> float
| def Identity | ( | self | ) |
Identity(Quat self)
| def Inverse | ( | self | ) |
Inverse(Quat self) -> Quat
| def Invert | ( | self | ) |
Invert(Quat self) -> Quat
| def IsIdentity | ( | self | ) |
IsIdentity(Quat self) -> int
| def LogN | ( | self | ) |
LogN(Quat self) -> Quat
| def MakeClosest | ( | self, | |
| args | |||
| ) |
MakeClosest(Quat self, Quat qto) -> Quat
| def Minus | ( | self, | |
| args | |||
| ) |
Minus(Quat self, Quat q) -> Quat
| def Normalize | ( | self | ) |
Normalize(Quat self)
| def Plus | ( | self, | |
| args | |||
| ) |
Plus(Quat self, Quat q) -> Quat
| def Scalar | ( | self | ) |
Scalar(Quat self) -> float
| def Set | ( | self, | |
| args | |||
| ) |
Set(Quat self, float X, float Y, float Z, float W) -> Quat Set(Quat self, double X, double Y, double Z, double W) -> Quat Set(Quat self, Point3 V, float W) -> Quat Set(Quat self, Matrix3 mat) -> Quat Set(Quat self, AngAxis aa) -> Quat
| def SetEuler | ( | self, | |
| args | |||
| ) |
SetEuler(Quat self, float X, float Y, float Z) -> Quat
| def SetW | ( | self, | |
| args | |||
| ) |
SetW(Quat self, float value)
| def SetX | ( | self, | |
| args | |||
| ) |
SetX(Quat self, float value)
| def SetY | ( | self, | |
| args | |||
| ) |
SetY(Quat self, float value)
| def SetZ | ( | self, | |
| args | |||
| ) |
SetZ(Quat self, float value)
| def Vector | ( | self | ) |
Vector(Quat self) -> Point3