Přístup: |
Pás karet:
karta CAM ![]() ![]() ![]() |
Strategie Jednoduchá drážka se používá pouze k drážkování na vybraných pozicích. Lze ji například použít k vytvoření drážky na zadní straně před závitováním.
Jedná se o typ chladiva použitého s nástrojem.
Koník se používá k podpoře podélné osy rotace obráběného obrobku. To je užitečné zejména u relativně dlouhých a tenkých obrobků. Pokud není použit koník, obrobek se může při řezání nadměrně ohýbat a může docházet k vibracím.
Aby bylo možné tuto možnost použít, musí být stroj vybaven programovatelným koníkem a postprocesor musí být nakonfigurován pro zápis kódu vyžadovaného strojem.
Pokud je tato možnost zapnuta, po konfiguraci se typicky na začátku operace zobrazí kód M21 (koník dopředu) a na konci M22 (koník dozadu).
Parkovací pozice je známá hodnota osy Z relativní k WCS definovaná v dialogu nastavení strategie na kartě Nastavení v sekci pracovního souřadnicového systému (WCS).
Můžete vynutit, aby se nástroj před spuštěním operace nebo po dokončení operace přesunul do parkovací pozice. Nástroj se z polotovaru vždy vysune ve směru osy X, a až dosáhne bezpečné výšky, přesune se do parkovací pozice ve směru osy Z.
Nepřecházet do parkovací pozice
Na začátku přejít do parkovací pozice
Na konci přejít do parkovací pozice
Na začátku a na konci přejít do parkovací pozice
Toto nastavení v závislosti na strategii soustružení (profil nebo drážkové) určuje, zda je obrábění nástrojem prováděno axiálně nebo radiálně a jaký je směr přiblížení a návratu.
Chcete-li automaticky přizpůsobovat otáčky vřetena při změnách poloměru řezání, a udržovat tak konstantní řeznou rychlost nástroje na obrobku, povolte tuto možnost. Konstantní řezná rychlost (CSS) je ve většině strojů určena pomocí kódu G96.
Jedná se o rotační rychlost vřetena.
Jedná se o rychlost vřetena, která je vyjádřena jako rychlost nástroje na povrchu.
Určuje maximální přípustné otáčky vřetena při použití konstantní řezné rychlosti (CSS).
Chcete-li automaticky přizpůsobovat rychlost posuvu otáčkám vřetena, a udržovat tak konstantní rychlost obrábění, povolte tuto možnost.
Jedná se o posuv použitý při řezání.
Jedná se o posuv použitý při nájezdu do řezného pohybu.
Jedná se o posuv použitý při odjezdu z řezného pohybu.
Nastavením této výšky lze řídit poloměr, ve kterém nástroj vstupuje na dráhu nástroje a vystupuje z dráhy nástroje. Nástroj se přibližuje k vnitřku polotovaru a vrací se od vnitřku polotovaru ve směru osy Z (osy vřetena) v tomto odsazení radiální bezpečné vzdálenosti. Hodnota zobrazená na oranžové kartě představuje aktuální poloměr relativní k ose nastavení.
Poloměr vnější bezpečné vzdálenosti
Určuje hodnotu odsazení bezpečné vzdálenosti.
Odsazení vnější bezpečné vzdálenosti
Určuje radiální omezující oblast vymezením vnějšího radiálního rozsahu dráhy nástroje. Lze vybrat následující možnosti:
Vnější poloměr
Určuje hodnotu odsazení vnějšího poloměru.
Určuje radiální omezující oblast vymezením vnitřního radiálního rozsahu dráhy nástroje. Lze vybrat následující možnosti:
Vnitřní poloměr
Určuje hodnotu odsazení vnitřního poloměru.
Tolerance obrábění je součtem tolerancí použitých při vytváření dráhy nástroje a triangulace geometrie. Chcete-li získat celkovou toleranci, je nutné přidat k této toleranci veškeré další tolerance filtrování.
Volná tolerance 0,100
Těsná tolerance 0,001
Konturovací pohyby stroje CNC jsou řízeny pomocí příkazů čar G1 a oblouků G2 a G3. Systém CAM toho dosáhne tím, že linearizuje dráhy nástroje na křivkách spline a povrchu, a tímto způsobem je aproximuje. Vytvoří se mnoho segmentů krátkých čar, které utvoří přibližnou podobu požadovaného tvaru. Přesnost, s jakou dráha nástroje odpovídá požadovanému tvaru, značně závisí na počtu použitých čar. Čím více je čar, tím více se dráha nástroje přiblíží jmenovitému tvaru spline nebo povrchu.
Nedostatek dat
Je lákavé používat vždy velmi těsné tolerance, existují však i stinné stránky tohoto postupu: delší časy výpočtu dráhy nástroje, velké soubory G-funkcí a velmi krátké pohyby po čarách. První dva problémy nejsou nijak závažné, protože aplikace Inventor HSM provádí výpočty velmi rychle a většina moderních řídicích systémů disponuje alespoň 1 MB paměti RAM. Krátké pohyby po čarách však mohou v kombinaci s vysokými rychlostmi posuvu vyústit v jev známý jako nedostatek dat.
Nedostatek dat nastane v situaci, kdy je řídicí systém příliš zahlcen daty a nedokáže je zpracovat. Řídicí systémy CNC mohou zpracovat konečný počet řádků kódu (bloků) za sekundu. Může to být pouhých 40 bloků za sekundu v případě starších strojů a 1000 bloků za sekundu u nových strojů, například řídicího systému HAAS Automation. Krátké pohyby po čarách a vysoké rychlosti posuvu mohou žádat rychlost zpracování, která přesahuje možnosti řídicího systému. Když k tomu dojde, musí stroj po každém pohybu počkat na další příkaz z řídicího systému.
Chcete-li aktivovat možnosti přerušování záběru, povolte tuto možnost.
Určuje hloubku přerušení záběru.
Určuje množství návratů při přerušovaném záběru.
Kladný
Kladný přídavek – určuje množství materiálu polotovaru zbylého po operaci, který má být odebrán následnými hrubovacími či dokončovacími operacemi. U hrubovacích operací se ve výchozím nastavení ponechá malé množství materiálu.
Žádný
Žádný přídavek – odstraní veškerý přebytečný materiál až k vybrané geometrii.
Záporný
Záporný přídavek – odstraní materiál za povrchem nebo hranicí součásti.
Parametr Radiální přídavek určuje množství materiálu, který se má ponechat v radiálním (kolmo k ose nástroje) směru, tj. na straně nástroje.
Radiální přídavek
Radiální a axiální přídavek
V důsledku stanovení kladného radiálního přídavku bude na svislých stěnách a strmých oblastech součásti ponechán materiál.
V případě povrchů, které nejsou přesně svislé, bude aplikace Inventor HSM interpolovat mezi axiální (dno) a radiální hodnotou přídavku, aby se materiál polotovaru zbylý v radiálním směru na těchto površích mohl lišit od určené hodnoty v závislosti na spádu povrchu a hodnotě axiálního přídavku.
Změnou radiálního přídavku se automaticky nastaví axiální přídavek na stejnou hodnotu, pokud ovšem hodnotu axiálního přídavku nezadáte ručně.
U dokončovacích operací je výchozí hodnota 0 mm/0", tj. nebude ponechán žádný materiál.
U hrubovacích operací se ve výchozím nastavení ponechá malé množství materiálu, který lze odebrat později pomocí jedné nebo více dokončovacích operací.
Záporný přídavek
Při použití záporného přídavku operace obrábění odstraní více hmoty z polotovaru než z tvaru modelu. Toho lze využít pro elektrody s jiskřištěm, kde velikost jiskřiště odpovídá zápornému přídavku.
Radiální i axiální přídavek může být záporný. Záporný radiální přídavek však musí být menší než poloměr nástroje.
Při použití kulového nebo toroidního řezacího nástroje se záporným přídavkem, který je větší než poloměr rohu, musí být záporný axiální přídavek menší nebo roven poloměru rohu.
Určuje, jakým způsobem se má nástroj vrátit na úroveň průměru bezpečné vzdálenosti po každém obráběcím záběru. Nebo že se má vrátit pouze do krátké vzdálenosti od úlohy. Vzdálenost je určena hodnotou Bezpečná vzdálenost.
Úplný návrat
Minimální návrat
Určuje, kdy mají být rychloposuvy ve výstupu jako skutečné rychloposuvy (G0) a kdy mají být ve výstupu jako pohyby s vysokou rychlostí posuvu (G1).
Tento parametr se obvykle nastavuje, aby nedocházelo ke kolizím u strojů, které při rychloposuvu provádějí pohyby „dog-leg“.
Rychlost posuvu, která se používá pro výstup rychloposuvů jako G1 místo G0.