Strength Dropoff attributes

The Strength Dropoff settings allow you to control the strength of links based on the Dropoff Distance. The right side of the graph represents the maximum distance for the links. The left side of the graph represents the links that have no length (value of 0).

You can use the graph to visually adjust the Strength Dropoff.

Selected Position

The active value on the X-axis of the graph.

When you move the position marker in the graph, this value is automatically adjusted to correspond.

Selected Value

The active value on the Y-axis of the graph.

When you move the position marker in the graph, this value is automatically adjusted to correspond.

Interpolation

Controls the way values are calculated in the graph. Select one of the following from the drop-down list:

None

There is no interpolation; each value is a distinct step on the graph.

Linear

The values are interpolated linearly in space.

Smooth

The values are interpolated along a bell curve, so that each value on the graph dominates the region around it, then blends quickly to the next value.

Spline

Similar to Smooth, but Spline takes into account neighboring indices for a smoother effect.

Exclude Collisions

When on, only nCloth constraint collisions are computed for the faces, edges, or vertices that are members of the current constraint.

Damp

Determines how much energy from the constraint is suppressed to reduce the movement of constrained elements. The default is 0.

Local Collide

When on, allows surface constraints to collide with the local surface at the constraint point. This collision is typically calculated more quickly than standard surface collisions. Local Collide is on by default for Point to Surface and Slide on Surface constraints.

Collide Width Scale

When Local Collide is turned on, the dynamicConstraintShape node handles the collisions between the constrained points. This can augment or replace the normal collisions between the objects. Collide Width Scale specifies a scaling value for the total collision thickness of the constrained objects. By default Collide Width Scale is set 1, meaning the collide width used for these collisions is based on the Thickness (nCloth) and Radius (nParticle) attribute values of the colliding objects.

Friction

Determines how freely sliding surface constraints can move. When Friction is set to 1, the surface constraints are locked and cannot move. When Friction is set to 0, the surface constraints are free to slide without restriction. The default is 0.

Single Sided

When on, restricts a surface constraint (that can move) to always being on one side of the constrained surface. The side that a constraint stays on is determined at the start frame and then maintained throughout simulation. This prevents constraints from flipping and pushing in the opposite direction when the constrained surface moves.

For example, you can constrain nCloth to an open cylinder and use the Single Sided attribute to keep the cloth from sliding into the cylinder, and use it to keep the cloth on the outside of the cylinder.

Max Iterations

Specifies the maximum number of iterations per simulation step for this dynamic constraint. Iterations are the number of calculations occurring within a step. Accuracy increases with increased iterations, however, calculation time also increases. The default value is 500.

Min Iterations

Specifies the minimum solver iterations used to evaluate the dynamic constraint. Iterations are the number of calculations occurring within a simulation step. When the current dynamic constraint’s Strength is low, Min Iterations increases the quality of the integration of the dynamic constraint’s effects. Min Iterations also affects other Nucleus object attributes such as the effect of Stretch Resistance on nCloth objects.