The Curves menu items process entire animation curves.
Animation curves are extrapolated outside the first and last keys of the curve. Curves before the first key and after the last key will be flat (no change in value over time) unless you set the pre and post infinity controls to anything other than constant. You can use these options to automatically generate specific types of repeating animation.
If you want to create editable animation of a repetitious or cyclical nature, you can bake a channel with Infinity turned on.
The Pre and Post settings define the behavior of an animation curve before and after the first key of that curve.
The Cycle setting repeats the animation curve as a copy infinitely.
The Cycle with Offset setting repeats the animation curve infinitely, except it appends the cycled curve’s last key’s value to the value of the first key’s original curve.
The Oscillate setting repeats the animation curve by reversing its values, and therefore shape, with each cycle, creating an alternating backwards and forwards effect.
The Linear setting extrapolates the value of the first key using its tangent information. It projects a linear curve infinitely beyond.
The Constant setting maintains the value of the end keys. This is the default setting for animation curves in Maya.
When on, only selected curves display in the graph view area and all other curves are hidden.
For example, to focus on only the Translate Y curves of several objects at once, select either the Translate Y curves in the graph view or the Translate Y channels in the Channel Box, then enable Isolate Curve. All other curves are hidden and you can easily edit the Translate Y curves alone.
This setting controls the smoothness resolution of curves in the graph view. Decreasing the resolution lessens the time to display the graph view.
Note that this setting has no impact on the behavior of animation curves, and it affects only the display of the curves in the graph view.
This operation calculates a new animation curve for an attribute using the input nodes that contribute to its properties. This is different from the Bake Animation operation in the Key menu. This operation is useful when you want to:
For example: an object affected by a driven key or an Expression.
To create animation curves from these animation types, use Bake Animation in the Key menu.
Select Bake Channel > to open the Bake Channel Options.
Specifies what keys are baked.
All keys present in the region between the Playback Start and End times in the Time Slider are baked into a new channel.
All keys within the specified time range (start time/end time) are baked into a new channel.
Specifies the start of the time range. Available only if Start/End is on.
Specifies the end of the time range. Available only if Start/End is on.
Specifies the frequency with which Maya will evaluate the animation and generate keys. Increasing this value decreases how often Maya sets keys for the animation. Decreasing has the opposite effect.
The Sample By value is based on the Time Unit setting. It represents the frequency with which Maya will analyze the object’s animation and generate a key. A value of 1 creates a key at each time unit. Greater values decrease the frequency of generated keys, and smaller values increase the frequency.
This is on by default. This option preserves the keys that are outside the baked time range and only applies to directly connected animation curves.
When turned on, bake simulation does not remove keys that are outside the bake range.
When turned off, only the keys created within the specified time range during the bake will be present on the animation curve after the operation.
This option operates only on directly connected animation curves. It produces bake results that create only enough keys to represent the shape of the animation curve.
Mutes the selected channel.
Mute appears under the current animation channel’s name in the outliner and the muted animation curve appears as a dotted line in the graph view. See also Mute channels.
Unmutes the selected (muted) channel. See also Mute channels.
Templates the selected animation channel in the outliner and its corresponding animation curve in the graph view.
When an animation channel is templated, its keys continue to contribute to its object’s overall animation, but its curve and keys in the graph view are no longer selectable. Also, a small icon appears beside the templated channel in the outliner, and the templated channel curve appears gray in the graph view.
Templating animation channels and their curves is useful when you have several overlapping animation curves with many keys, and you want to edit only one curve, but you need to be able to see all the other curves in the graph view.
Untemplates the selected animation channel in the outliner and its corresponding animation curve in the graph view. When an animation channel is untemplated, its curve and keys in the graph view can once again be selected.
Pins the selected channel so that its curve displays in the graph area regardless of what is selected. See also Pinning channels.
Unpins the selected channel so that its curve displays only when it is selected.
This menu lets you change the rotation interpolation type of existing curves.
You can change the rotation interpolation type only on rotation channels that have keyframes on all three channels (rotateX, rotateY, rotateZ). In addition, because the rotateX, rotateY and rotateZ channels always share the same interpolation type, changing interpolation for a single channel such as rotateX, will automatically change rotateY and rotateZ as well.
For more information on rotation interpolation, see Animated rotation in Maya.
Calculates the rotation using three separate angles representing rotations about the X, Y, and Z axes, and an order or rotation. In this mode, the curves that define the rotation for a given node are represented in Euler-angles, interpolation is performed on each curve independently in Euler space, and keyframes may occur at your discretion—they are not synchronized with the other sibling rotation curves at the node. You can also animate a single rotation ordinate. This is the default setting.
Creates curves that have keyframes on sibling curves locked together but with interpolation between keyframes performed in Euler-space.
It’s useful to keep rotation keyframes synchronized because rotation is a composition of the three separate rotate values. Deleting just one key on a curve can have a dramatic and unexpected effect on the interpolation.
Interpolation is calculated using spherical linear interpolation and does not depend on the tangents of the input curves.
Interpolation is calculated using quaternion cubic interpolation (Squad) and does not depend on the tangents of the input curves.
Interpolation is calculated using quaternion interpolation based on the input curve tangents. For example, if the tangents are linear, Maya uses spherical linear interpolation (Slerp), and if the tangents are clamped, Maya uses cubic interpolation (Squad).
Use this operation to remove keys that are not necessary to describe the shape of an animation curve. Excess keys may accumulate on an animation curve as a result of adding keys manually or performing operations such as Bake Channel. You may need to remove keys from an animation curve to reduce the graph complexity and provide larger spans for adjusting curve tangents.
Specifies the time range where the curve is simplified.
Simplifies the curve for the entire time range.
Simplifies the curve for the time range defined by the Playback Start and End times of the Time Slider.
All keys within the specified time range (start time/end time) are simplified.
Specifies the start of the time range. This is available only if Start/End is on.
Specifies the end of the time range. This is available only if Start/End is on.
Set one of the following options:
Removes excess keys using the algorithm used in previous versions of Maya. Use this method on light data sets, such as keyframe animations, which don’t have keys on every frame.
Removes excess keys using an algorithm designed for dense data sets, such as motion capture data, which have a key on every frame. This method may also work well if the Classic method doesn’t give you the desired results.
The amount (in seconds) that the timing for the keys is averaged when the selected curve is simplified. The higher the Time Tolerance, the sparser your keys and the less your resulting curve resembles the original curve. The default Time Tolerance is 0.05.
The amount (in your current working units) that the values of the keys are averaged when the selected curve is simplified. The default Value Tolerance to 0.01.
Resampling creates a periodic frame rate by placing keys at uniform intervals.
To resample a curve, you select a sampling filter, which is an algorithm defining how the keys in the curve are resampled. Tangent and curve values are ignored. The filter converts animation curves with keys at either uniform or non-uniform intervals to curves with keys at a uniform interval that you specify.
Select Resample Curve > to open the Resample Curve Options.
Specifies the range of time in where keys are resampled.
Resamples the curve for the entire time range.
All keys within the specified time range (start time/end time) are resampled.
Resamples the curve for the time range defined by the Playback Start and End times of the Time Slider.
Specifies the start of the time range. This is available only if Start/End is on.
Specifies the end of the time range. This is available only if Start/End is on.
Specifies the resampling filter, which is an algorithm that defines how the keys in the curve are resampled. Choose one of the following:
Uses the value of the sample that is closest to the nearest time step.
Uses linear interpolation between two samples closest to the nearest time step.
Sums up all the samples in the filter area with an equal weight.
Uses a linear curve that affects the keys so that the least filtering happens at the edges of the sampled area.
Uses a sloped curve that weights the sampling gently at the top of the peak and toward the edge of the sampled area. This is the default.
Similar to the Gaussian2 filter but with a narrower base.
Sets the period for resampling. If you set Time Step to 4, then a key frame will be placed every four frames. Resampling works best when the Time Step period is greater than the frequency of keyframes on the curve.
This menu selection lets you edit the values and attributes of the selected animation curves in a spreadsheet format in the Attribute Editor.
Select from the following options:
Takes a snapshot of your curve. Use Swap Buffer Curve to switch between your curve snapshot and the current curve. See also View curves while editing.
Takes a snapshot of a referenced animation curve. Use Swap Buffer Curve to switch between your 'buffer' referenced curve and the current referenced curve. See also Edit animation curves from referenced files.
Toggles between the original curve (the buffer curve snapshot or the referenced curve snapshot) and the current, edited curve. Lets you view and play both the curves animations. See also View curves while editing and Edit animation curves in referenced files.
The default setting is non-weighted tangents, which provide simple handles for manipulating the tangent’s angle. To change the weighting of an animation curve, use Curves > Weighted to change the curve’s tangent type to weighted.
Weighted tangents represent the amount of influence a tangent’s length has on an animation curve segment. By turning on Free Tangent Weight (see Free Tangent Weight), it is possible to simultaneously edit the influence and angle of the tangent quickly and intuitively. Users of desktop illustration packages will recognize the familiar Bezier-style behavior when in this mode.
Tangent weights are represented by the length of the tangent handle, and editable tangent weights are manipulated by dragging the handle’s length.
Tangents of weighted animation curves have not only an angle but also a weight. The higher the weight of a tangent, the more influence it has on the shape of the curve segment compared with the tangent at the other end of the curve segment.