Calcule les propriétés de masse des régions ou des solides AutoCAD 3D.
Pour obtenir une liste exhaustive des définitions des propriétés de masse ou de la région calculées, reportez-vous au système d'aide.
Les invites suivantes s'affichent.
Choix des objets : Utilisez une méthode de sélection d'objets.
Si vous sélectionnez plusieurs régions, seules celles qui sont coplanaires avec la première région sélectionnée sont acceptées.
PROPMECA affiche les propriétés de masse dans la fenêtre de texte, puis demande si vous souhaitez écrire ces informations dans un fichier texte (.mpr).
Les propriétés affichées par PROPMECA varient selon que les objets sélectionnés sont des régions et si les régions sélectionnées sont coplanaires avec le plan XY du système de coordonnées utilisateur (SCU) courant ou des solides 3D. Pour obtenir la liste des paramètres qui gèrent les unités PROPMECA, voir la section Calculs basés sur le SCU courant.
Le tableau suivant présente les propriétés de masse affichées pour toutes les régions.
Propriétés de masse pour toutes les régions |
|
---|---|
Propriété de masse |
Description |
Aire |
Surface de solides 3D AutoCAD ou aire fermée de régions. |
Périmètre |
Longueur totale des boucles internes et externes d'une région. Le périmètre d'un solide 3D n'est pas calculé. |
Zone de contour |
Les deux coordonnées définissant la zone de contour. Pour les régions coplanaires au plan XY du système de coordonnées utilisateur (SCU) courant, la zone de contour est définie par les coins diagonalement opposés d'un rectangle qui délimite la région. Pour les régions non coplanaires au plan XY du SCU courant, la zone de contour est définie par les coins diagonalement opposés d'une boîte 3D qui délimite la région. |
centre |
Coordonnée 2D ou 3D qui représente le centre de zone pour les régions. Pour les régions coplanaires avec le plan XY du SCU courant, cette coordonnée est un point 2D. Pour les régions non coplanaires au plan XY du SCU courant, cette coordonnée est un point3D. |
Si les régions sont coplanaires au plan XY du SCU courant, les propriétés supplémentaires présentées dans le tableau suivant s'affichent.
Propriétés de masse supplémentaires des régions coplanaires |
|
---|---|
Propriété de masse |
Description |
Moments d'inertie |
Valeur utilisée pour le calcul des charges réparties (pression d'un fluide sur une plaque, par exemple), ou le calcul des forces dans une poutre qui ploie ou se déforme. La formule permettant de déterminer les moments d'inertie de la zone est la suivante : moments_d'inertie_de_zone = zone_d'intérêt * rayon 2 Les moments d'inertie de la zone ont des unités de distance à la puissance 4. |
Produits d'inertie |
Propriété servant à déterminer les forces à l'origine du déplacement d'un objet. Le calcul s'effectue toujours par rapport à deux plans orthogonaux. La formule du produit d'inertie pour les plans YZ et XZ est la suivante : produit_d'inertie YZ,XZ = masse * dist centre_de_gravité_dans_YZ * dist centre_de_gravité_dans_XZ Cette valeur XY est exprimée en unités de masse, multipliées par la longueur au carré. |
Rayons de giration |
Les rayons de giration constituent un autre moyen pour indiquer les moments d'inertie d'un solide 3D. La formule pour les rayons de giration est la suivante : rayons_de_giration = (moments_d'inertie/masse_du_corps) 1/2 Les rayons de giration sont exprimés en unités de distance. |
Moments principaux et directions X,Y,Z autour du centre de gravité. |
Calculs dérivés des produits d'inertie et ayant les mêmes unités de valeur. Le moment d'inertie est le plus fort sur un certain axe au centre de gravité d'un objet. Il est le plus faible sur le second axe normal par rapport au premier axe et passant également par le centre de gravité. Une troisième valeur est incluse dans les résultats ; elle se situe entre les deux valeurs extrêmes. |
Le tableau suivant présente les propriétés de masse affichées pour les solides.
Propriétés de masse des solides |
|
---|---|
Propriété de masse |
Description |
Masse |
Mesure de l'inertie d'un corps. Etant donné qu'une densité d'un seul corps est utilisée, la masse et le volume affichent la même valeur. |
Volume |
C'est la quantité d'espace tridimensionnel contenu dans un solide. |
Zone de contour |
Coins diagonalement opposés d'une boîte 3D délimitant le solide. |
centre |
Point 3D situé au centre de la masse pour un solide. Un solide de densité uniforme est utilisé par défaut. |
Moments d'inertie |
Moments de masse d'inertie, qui servent à calculer la force requise pour faire tourner un objet autour d'un axe donné, comme une roue autour d'un axe. La formule permettant de déterminer les moments de masse d'inertie est la suivante : moments_de_masse_d'inertie = masse_de_l'objet * rayon axe 2 L'unité des moments de masse d'inertie est la masse (grammes ou slugs) multipliée par la distance au carré. |
Produits d'inertie |
Propriété servant à déterminer les forces à l'origine du déplacement d'un objet. Le calcul s'effectue toujours par rapport à deux plans orthogonaux. La formule du produit d'inertie pour les plans YZ et XZ est la suivante : produit_d'inertie YZ,XZ = masse * dist centre_de_gravité_dans_YZ * dist centre_de_gravité_dans_XZ Cette valeur XY est exprimée en unités de masse, multipliées par la longueur au carré. |
Rayons de giration |
Les rayons de giration constituent un autre moyen pour indiquer les moments d'inertie d'un solide. La formule pour les rayons de giration est la suivante : rayons_de_giration = (moments_d'inertie/masse_du_corps) 1/2 Les rayons de giration sont exprimés en unités de distance. |
Moments principaux et directions X,Y,Z autour du centre de gravité. |
Calculs dérivés des produits d'inertie et ayant les mêmes unités de valeur. Le moment d'inertie est le plus fort sur un certain axe au centre de gravité d'un objet. Il est le plus faible sur le second axe normal par rapport au premier axe et passant également par le centre de gravité. Une troisième valeur est incluse dans les résultats ; elle se situe entre les deux valeurs extrêmes. |
Le tableau suivant présente les paramètres qui gèrent les unités de calcul des propriétés de masse.
Paramètres gérant les unités de PROPMECA |
|
---|---|
Paramètre |
Utilisé pour calculer |
DENSITE |
Masse des solides |
LONGUEUR |
Volume des solides |
LONGUEUR*LONGUEUR |
Aire des régions et aire de surface des solides |
LONGUEUR*LONGUEUR*LONGUEUR |
Zone de contour, rayons de giration, centre de gravité et périmètre |
DENSITE*LONGUEUR*LONGUEUR |
Moments d'inertie, produits d'inertie et moments principaux. |