2D-Tasche

2D-Tasche ist eine Schruppoperation mit Optionen zum Erstellen eines Schlichtdurchgangs. Sie können eine Kavität, eine offene Tasche oder den Bereich um ein Schraubloch herum freiräumen. Der Werkzeugweg ähnelt der Form der Begrenzung, die bearbeitet wird. Der Bearbeitungsbereich kann durch die Auswahl von Kanten, Skizzen oder einer Volumenkörperfläche bestimmt werden. Enthält Optionen für schräge Wände und Anfahrpositionen zum Vorbohren.



Zugriff:

Multifunktionsleiste: Registerkarte CAM Gruppe 2D Fräsen 2D-Tasche

Einstellungen auf der Registerkarte Werkzeug + Informationen

Kühlmittel

Wählen Sie die Art des Kühlmittels aus, das für die Werkzeugmaschine verwendet wird. Nicht alle Arten funktionieren mit allen Maschinen-Postprozessoren.

Vorschub und Drehzahl

Spindel- und Vorschub-Schnittparameter.

Einstellungen auf der Registerkarte Geometrie

Geometrie

Wählen Sie Flächen, Kanten oder Skizzen aus. Sie können Rohteilmaterial aus dem Inneren einer Tasche oder von der Außenseite einer stehenden Insel entfernen.

  1. Bearbeiten geschlossener Taschen
  2. Bearbeiten offener Taschen
  3. Bearbeiten stehender Inseln

Taschenauswahl

Wählen Sie eine beliebige Fläche, Kante oder Skizze aus, um die Bearbeitungsbegrenzung zu definieren. Verwenden Sie die Kantenauswahl für Bereiche mit Bohrungen oder Taschen innerhalb von Taschen. Für stehende Inseln wählen Sie die äußere Begrenzung der Insel und aktivieren die Option Rohteilkonturen (siehe unten). Der Werkzeugweg wird zwischen der gewählten Begrenzung und dem äußeren Rohteilbereich berechnet.

Wählen Sie Flächen, Kanten oder Skizzen aus. Verwenden Sie die Kantenauswahl für Bereiche mit Bohrungen oder Taschen innerhalb von Taschen.

  1. Flächenauswahl für geschlossene Tasche
  2. Flächenauswahl für offene Tasche
  3. Kantenauswahl für stehende Insel. Darstellung mit Rohteilgrenze

Rohteilkontur

Wenn diese Option aktiviert ist, wird der Werkzeugweg so berechnet, dass die Begrenzungen des definierten Rohteils oder eine ausgewählte Begrenzung berücksichtigt werden. Die vorgegebene Begrenzung ist der Rohteilrahmen, wie im Setup angegeben. Sie können auch Kanten im Modell oder eine Skizzenbegrenzung auswählen. Dies bietet zusätzlichen Sicherheitsabstand für die Ein- und Ausfahrbewegungen. Dies kann den Bearbeitungsbereich des Rohteils einschränken oder erweitern. Lassen Sie die Option für Taschen mit geschlossener Begrenzung deaktiviert.

Rohteilauswahl - Wählen Sie eine geschlossene Begrenzung, um den Bearbeitungsbereich zu definieren. Zur Bearbeitung des Rohteilrahmens, der im Setup angegeben wurde, ist keine Auswahl erforderlich. Wenn Sie eine Begrenzung auswählen, die größer als das Rohteil ist, wird der Schnittbereich erweitert. Dies kann für unregelmäßige Rohteilgrößen nützlich sein. Die ausgewählte Bearbeitungsbegrenzung kann eine beliebige Form haben.

Wählen Sie Kanten oder Skizzen, um die Schnittbegrenzung zu definieren.

  1. Aus Rohteil berechnet - keine Auswahl erforderlich
  2. Eine Skizze, die größer als das Rohteil ist, erweitert den Schnittbereich
  3. Der ausgewählte Bereich kann eine beliebige Größe oder Form haben
Anmerkung: Es handelt sich nicht um eine Werkzeugbegrenzung, da sich das Werkzeug von außen dem ausgewählten Bereich nähert.

Restmaterialbearbeitung

Wenn diese Option aktiviert ist, wird die Operation darauf beschränkt, nur Material zu entfernen, das von einem vorherigen Werkzeug oder bei einer vorherigen Operation nicht entfernt werden konnte.

Bei der Restmaterialbearbeitung geht es um das verbleibende Rohteilmaterial.

Erfordert zusätzliche Informationen über das Werkzeug, das zuvor zum Schneiden der Begrenzung verwendet wurde.

  1. Zu bearbeitender Bereich - Tasche wird grün angezeigt
  2. Vorherige Operation - nicht das gesamte Rohteil wird entfernt
  3. Restmaterialbearbeitung deaktiviert - alle Bereiche werden bearbeitet
  4. Restmaterialbearbeitung aktiviert - bisher noch nicht geschnittene Bereiche werden bearbeitet

Werkzeugorientierung

In Inventor CAM Express nicht verfügbar

Gibt an, wie mithilfe einer Kombination aus Dreiergruppenausrichtungs- und Ursprungsoptionen die Werkzeugorientierung bestimmt wird.

Das Dropdown-Menü Werkzeugansicht stellt die folgenden Optionen zum Festlegen der Ausrichtung der X-, Y- und Z-Dreiergruppenachsen bereit:

Das Dropdown-Menü Ursprung bietet die folgenden Optionen zum Lokalisieren des Dreiergruppenursprungs:

Einstellungen auf der Registerkarte Höheneinstellungen

Sicherheitshöhe

Die Sicherheitshöhe ist die erste Höhe, die das Werkzeug auf seinem Weg zum Beginn des Werkzeugwegs per Eilgang ansteuert.



Sicherheitshöhe

Sicherheitshöhen-Offset:

Der Sicherheitshöhen-Versatz wird in Abhängigkeit von der in der oben stehenden Dropdown-Liste ausgewählten Sicherheitshöhe angewendet.

Rückzugshöhe

Mit der Rückzugshöhe wird die Höhe festgelegt, zu der das Werkzeug nach oben verschoben wird, bevor die nächste Schnittbewegung erfolgt. Der Wert für die Rückzugshöhe muss über dem Wert für Vorschubhöhe und Oberkante liegen. Die Rückzugshöhe wird zusammen mit dem nachfolgenden Versatz zum Festlegen der Höhe verwendet.



Rückzugshöhe

Rückzugshöhen-Offset:

Der Rückzugshöhenversatz wird in Abhängigkeit von der in der oben stehenden Dropdown-Liste ausgewählten Rückzugshöhe angewendet.

Anfahrhöhe

Die Vorschubhöhe legt die Höhe fest, zu der das Werkzeug vor dem Wechsel zum Vorschub, um in das Bauteil einzutauchen, im Eilgang verschoben wird. Der Wert für die Vorschubhöhe muss über dem Wert für Oberkante liegen. Bei einer Bohrung wird diese Höhe als die ursprüngliche Anfahrhöhe und Einstech-Rückzugshöhe verwendet. Die Vorschubhöhe wird zusammen mit dem nachfolgenden Versatz verwendet, um die Höhe festzulegen.



Anfahrhöhe

Anfahrhöhen-Offset:

Der Vorschubhöhenversatz wird in Abhängigkeit von der in der oben stehenden Dropdown-Liste ausgewählten Vorschubhöhe angewendet.

Oberkante/Anfangshöhe der Bearbeitung

Über Obere Höhe wird die Höhe festgelegt, die die Oberkante des Schnitts beschreibt. Der Wert für Obere Höhe muss über dem Wert für Unterkante liegen. Die obere Höhe wird zusammen mit dem nachfolgenden Versatz zum Festlegen der Höhe verwendet.



Oberkante/Anfangshöhe der Bearbeitung

Oberkanten-Offset:

Der Versatz Oben wird in Abhängigkeit von der in der oben stehenden Dropdown-Liste ausgewählten oberen Höhe angewendet.

Endtiefe der Bearbeitung

Die Endhöhe bestimmt die Endhöhe/-tiefe der Bearbeitung und die niedrigste Tiefe, auf die das Werkzeug in das Rohteil abgesenkt wird. Der Wert für Endhöhe muss unter dem Wert für Oberkante liegen. Die Endhöhe wird zusammen mit dem nachfolgenden Versatz zum Festlegen der Höhe verwendet.



Endtiefe der Bearbeitung

Unterkanten-Offset:

Der Versatz Unten wird in Abhängigkeit von der in der oben stehenden Dropdown-Liste ausgewählten Endtiefe angewendet.

Einstellungen auf der Registerkarte Strategieeinstellungen

Toleranz:

Die Toleranz wird beim Linearisieren von Geometrie, wie z. B. Splines und Ellipsen, verwendet. Die Toleranz wird als die maximale Sehnenlänge verwendet.



Hohe Toleranz 0,100



Niedrige Toleranz 0,001

Die Konturbewegung der CNC-Maschine wird über den Linienbefehl G1 und die Bogenbefehle G2 und G3 gesteuert. Hierzu werden mittels Linearisierung genäherte Spline- und Flächenwerkzeugwege berechnet; auf diese Weise entstehen mehrere kurze Liniensegmente, welche der gewünschten Form annähernd entsprechen. Wie genau der Werkzeugweg der gewünschten Form entspricht, hängt weitgehend von der Anzahl der verwendeten Linien ab. Je mehr Linien, desto enger nähert sich der Werkzeugweg der Nennform des Splines oder der Fläche an.

Data Starving

Es ist verlockend, immer sehr enge Toleranzen zu verwenden, aber dies muss gegen gewisse Aspekte abgewogen werden, wie z. B. längere Zeiten für die Werkzeugwegberechnung, große G-Code-Dateien und sehr kurze Linearbewegungen. Die ersten beiden Aspekte stellen kein großes Problem dar, da Inventor CAM Berechnungen sehr schnell durchführt und die meisten modernen Steuerungen über mindestens 1 MB RAM verfügen. Die kurzen Linearbewegungen können jedoch in Verbindung mit hohen Vorschubgeschwindigkeiten zu einem Phänomen führen, das als Data Starving bekannt ist.

Data Starving tritt auf, wenn die Steuerung so stark mit Daten überflutet wird, dass sie die Verarbeitung nicht bewältigen kann. CNC-Steuerungen können nur eine begrenzte Anzahl von Codezeilen (Blöcken) pro Sekunde verarbeiten. Die Bandbreite reicht von gerade einmal 40 Blöcken/Sekunde auf älteren Maschinen bis zu 1.000 Blöcken/Sekunde und mehr auf neueren Maschinen wie der Haas Automation-Steuerung. Kurze Linearbewegungen und hohe Vorschubgeschwindigkeiten können die Verarbeitungsrate derart erhöhen, dass die Steuerung überfordert ist. Wenn dies geschieht, muss die Maschine nach jeder Bewegung anhalten und auf den nächsten Servobefehl von der Steuerung warten.

Seitliche Kompensation:

Mit dieser Einstellung wird die Seite des Werkzeugwegs, von der das Werkzeugzentrum versetzt ist, ermittelt. Sie können zwischen den seitlichen Kompensationen Links (Gleichlauffräsen) und Rechts (Gegenlauffräsen) auswählen.

Links (Gleichlauffräsen)

Gleichlauffräsen

Rechts (Gegenlauffräsen)

Gegenlauffräsen

Gleichlauffräsen kann man sich so vorstellen, dass das Schneidwerkzeug "entlang der Oberfläche rollt", die geschnitten wird. Dies resultiert bei den meisten Metallen in der Regel in einer besseren Oberflächengüte, erfordert jedoch eine gute Maschinenfestigkeit. Wenn Sie diese Methode verwenden, haben die Späne am Anfang die maximale Dicke und werden zum Ende des Schnitts hin dünner. Dies bedeutet mehr Wärme im Span und weniger im Bauteil.

Beim Gegenlauffräsen wird das Schneidwerkzeug "von der Oberfläche weg bewegt", die geschnitten wird. Diese Methode wird häufiger bei manuellen oder weniger festen Maschinen verwendet. Sie hat einige Vorteile und kann sogar zu einer besseren Oberflächengüte führen, wenn bestimmte Materialien, einschließlich einiger Holzarten, bearbeitet werden.

Schlichtdurchgänge

Aktivieren Sie diese Option, um bei Schlichtdurchgängen die Seite des Werkzeugs zu verwenden.



Mit Schlichtdurchgängen



Ohne Schlichtdurchgänge

Anzahl der Schlichtdurchgänge:

Erzwingt eine vollständige Ein- und Ausfahrt bei allen Schlichtdurchgängen.



Aktiviert



Deaktiviert

Anmerkung: Die Parameter Ein-/Ausfahrt werden auf der Registerkarte Verbindungen und Anfahr-Wegfahrbewegungen festgelegt.

Querzustellung:

Der maximale Abstand zwischen Schlichtdurchgängen

Erneute Anfahrt bei allen Schlichtdurchgängen

Erzwingt eine vollständige Ein- und Ausfahrt bei allen Schlichtdurchgängen.



Keine Überlappung Ein- und Ausfahrpunkt



0,25 Zoll Überlappung Ein- und Ausfahrpunkt

Anmerkung: Die Parameter Ein-/Ausfahrt werden auf der Registerkarte Verbindungen und Anfahr-Wegfahrbewegungen festgelegt.

Schlichtvorschub:

Der Vorschub für den letzten Schlichtdurchgang

Schlichtdurchgang wiederholen

Aktivieren Sie diese Option zum zweimaligen Durchführen des endgültigen Schlichtdurchgangs, um Material vom Rohteil zu entfernen, das aufgrund von Werkzeugdurchbiegung übrig ist.

Überlappung Ein- und Ausfahrpunkt:

Die Überlappung Ein- und Ausfahrpunkt ist die Entfernung, in der das Werkzeug vor der Ausfahrt über den Einfahrpunkt hinausgeht. Durch Angabe einer Überlappung Ein- und Ausfahrpunkt wird sichergestellt, dass das Material am Einstiegspunkt korrekt bearbeitet wird.



Keine Überlappung Ein- und Ausfahrpunkt



0,25 Zoll Überlappung Ein- und Ausfahrpunkt

Anmerkung: Die Überlappung Ein- und Ausfahrpunkt folgt der ausgewählten Kontur, sodass Sie eine große Überlappung angeben können.

Reihenfolge beibehalten

Gibt an, dass die Elemente in der Reihenfolge bearbeitet werden, in der sie ausgewählt wurden. Wenn diese Option deaktiviert ist, optimiert Inventor CAM die Schnittreihenfolge.

Beide Richtungen

Gibt an, dass die Operation offene Profile im Gleichlauf und Gegenlauf fräst.

Maximale Zustellung:

Gibt die maximale horizontale Zustellung zwischen Durchgängen an.



Anmerkung: Dies ist NICHT identisch mit den optimalen Zustellungen bei 3D Adaptive Clearing-Wegen. Bei herkömmlichen 2D-Schruppvorgängen führt das Werkzeug dennoch einen Vollschnitt beim Übergang von einem Durchgang zum nächsten aus.


3D-Adaptive Clearing



Herkömmliche 2D-Fräsvorgänge

Minimaler Schneidenradius:



Mit festgelegtem minimalem Schneidenradius



Ohne festgelegten minimalen Schneidenradius

Ohne festgelegten minimalen Schneidenradius - Das Werkzeug versucht, auf dem Werkzeugweg überall dort Material freizuräumen, wo es hinreichen kann. Dies erzeugt scharfe Ecken im Werkzeugweg, die im bearbeiteten Bauteil häufig zu Rattern führen.

Anmerkung: Wenn dieser Parameter festgelegt wird, verbleibt mehr Material in Innenecken, sodass zur Restmaterialbearbeitung nachfolgende Operationen mit einem kleineren Werkzeug nötig sind.

Morph-Spiralen-Bearbeitung verwenden

Aktivieren Sie diese Option, um einen Werkzeugweg mit konstanter Spiralbearbeitung für die Tasche zu generieren. Damit kann ein ruhiger Lauf der Maschine erzielt werden.



Standard-Werkzeugweg für 2D-Tasche



Werkzeugweg mit Leitkurven-Morph-Spirale für 2D-Tasche

Spitzenüberquerung zulassen

Beim Programmieren flacher Oberflächen mit einem Werkzeug mit Eckenradius können zwischen Querzustellungen Überhöhungen (oder HSC-Konturen) erzeugt werden.

Um sicherzustellen, dass keine Spitzenüberquerungen erzeugt werden, wird der Wert für Maximale Zustellung vorgabemäßig überschrieben.



Spitzenüberquerung zulassen deaktiviert



Spitzenüberquerung zulassen aktiviert

Oben - Mit einem 3/8-Zoll-Radienfräser bei maximaler Zustellung von 0,25 Zoll bearbeitete Tasche.

Glättungsabweichung:

Der Maximalwert für die Glättung bei Schruppvorgängen. Verwenden Sie diesen Parameter, um scharfe Ecken im Werkzeugweg zu vermeiden.



Tiefenschnitte

Gibt an, dass mehrere Tiefen geschnitten werden sollen.



Mit mehreren Tiefenschnitten



Ohne mehrere Tiefenschnitte

Anmerkung: 3D Adaptive Clearing-Strategien ermöglichen wesentlich dynamischere Tiefenschnitte als ältere 2D Taschen.

Maximale Tiefenzustellung

Gibt den Abstand für die maximale Tiefenzustellung zwischen Z-Ebenen an. Die maximale Tiefenzustellung wird auf die volle Tiefe abzüglich verbleibende Rohteil- und Schlichtdurchgangsmengen angewendet.



  • Letzter Schruppdurchgang kann kleiner als maximale Tiefenzustellung sein
  • Darstellung ohne Schlichtzustellung
  • Darstellung ohne zusätzliches radiales Rohteil

Schlichtzustellungen:

Anzahl der Schlichtdurchgänge mit der Unterseite des Werkzeugs



Mit drei Schlichtdurchgängen dargestellt

Schlichtzustellung:

Die Größe der einzelnen Tiefenzustellungen bei den Schlichtdurchgängen



Schlichtzustellung

Wandkonik (Grad)

Bestimmt den Konuswinkel der Wände.

Das Definieren eines Neigungswinkels kann verwendet werden, um Elemente, die andernfalls eine 3D-Strategie erfordern würden, mit einer 2D-Strategie zu bearbeiten.

Anmerkung: Der Neigungswinkel wird NICHT durch die Modellgeometrie bestimmt, sodass ein Fehler bei der Eingabe des Neigungswinkels sich auf das fertig bearbeitete Bauteil auswirken kann.


Neigungswinkel 0 Grad



Neigungswinkel 45 Grad

Geometrieauswahl



Auswahl unten



Auswahl oben

Anmerkung: Bei Verwendung eines Neigungswinkels mit der 3D Adaptive Clearing-Strategie, muss die Geometrie am oberen Rand der Tasche ausgewählt werden.

Schlichten nur bei Endtiefe

Führen Sie das Schlichten nur bei der Endtiefe durch, um zu verhindern, dass an den Wänden Spuren zurückbleiben.



Deaktiviert



Aktiviert

Letzter Schruppdurchgang

Aktivieren zum Anwenden von Schlichtzustellung zu jedem Schruppdurchgang/Schlichten, wenn Sie mehrere Tiefen mit einer oder mehreren Schlichtzustellungen ausführen.

Verwendung gleichmäßiger Zustellungen

Aktivieren zum Erstellen gleichmäßiger Abstände zwischen Bearbeitungsläufen

Beispiel: Angenommen, Sie bearbeiten ein Profil mit einer Tiefe von 23 mm und einer maximalen Zustellung = 10 mm.

Sortieren nach Tiefe

Gibt an, dass die Bearbeitung von oben nach unten durchgeführt wird.



Deaktiviert



Aktiviert

Seitl. Zustellung tiefenorientiert

Bei aktivierter Option wird jeder Schrupp- und Schlichtschritt bis zur vollen Tiefe bearbeitet, bevor Sie mit dem nächsten Schritt fortfahren.



Deaktiviert



Aktiviert

Aufmaß



Positiv

Positives Aufmaß - Der nach einer Operation verbleibende Betrag des Rohteils, der mittels nachfolgender Schrupp- oder Schlichtoperationen zu entfernen ist. Bei Schruppoperationen bleibt vorgabemäßig ein geringer Materialbetrag zurück.



Keine

Kein Aufmaß - Sämtliches überschüssiges Material wird bis zur ausgewählten Geometrie entfernt.



Negativ

Negatives Aufmaß - Material wird über die Bauteilfläche oder -begrenzung hinaus entfernt. Dieses Verfahren wird häufig bei der Elektrodenbearbeitung zum Ermöglichen einer Funkenstrecke verwendet oder um Toleranzanforderungen eines Bauteils zu erfüllen.

Radiales (oberes) Aufmaß

Der Parameter Radiales Rohteil-Aufmaß steuert den Betrag des in der radialen Richtung (lotrecht zur Werkzeugachse), also an der Seite des Werkzeugs, zu belassenden Materials.



Radiales Rohteil-Aufmaß



Radiales und axiales Aufmaß

Die Angabe eines positiven radialen Rohteil-Aufmaßes führt dazu, dass Material an den vertikalen Wänden und steilen Bereichen des Bauteils zurückbleibt.

Bei nicht exakt vertikalen Flächen interpoliert Inventor CAM zwischen den Werten für axiales (unteres) und radiales Rohteil-Aufmaß, sodass das in radialer Richtung auf diesen Flächen verbleibende Rohteilmaterial je nach Flächenneigungswinkel und Wert für axiales Rohteil-Aufmaß vom angegebenen Wert abweichen könnte.

Bei einer Änderung des radialen Rohteil-Aufmaßes wird das axiale Rohteil-Aufmaß automatisch auf denselben Betrag festgelegt, sofern Sie das axiale Rohteil-Aufmaß nicht manuell eingeben.

Bei Schlichtoperationen ist der Vorgabewert 0 mm/0 Zoll, d. h., es bleibt kein Material zurück.

Bei Schruppoperationen bleibt vorgabemäßig ein geringer Materialbetrag zurück, der später durch eine oder mehrere Schlichtoperationen entfernt werden kann.

Negatives Aufmaß

Bei Verwendung eines negativen Aufmaßes wird bei der Bearbeitung mehr Material vom Rohteil entfernt als Ihre Modellform aufweist. Dies kann zum Bearbeiten von Elektroden mit einer Funkenstrecke verwendet werden, wobei die Funkenstrecke dem negativen axialen Aufmaß entspricht.

Sowohl das radiale als auch das axiale Aufmaß kann einen negativen Wert haben. Das negative radiale Aufmaß muss jedoch kleiner sein als der Werkzeugradius.

Bei Verwendung eines Kugel- oder Radienfräsers mit negativem radialem Aufmaß, das größer ist als der Eckradius, muss das negative axiale Aufmaß kleiner oder gleich dem Eckradius sein.

Axiales (unteres) Aufmaß

Der Parameter Axiales Rohteil-Aufmaß steuert den Betrag des in der axialen Richtung (entlang der Z-Achse), also am Ende des Werkzeugs, zu belassenden Materials.



Axiales Rohteil-Aufmaß



Die Angabe eines positiven axialen Rohteil-Aufmaßes führt dazu, dass Material an den flachen Bereichen des Bauteils zurückbleibt.

Bei nicht exakt horizontalen Flächen interpoliert Inventor CAM zwischen den Werten für axiales und radiales (oberes) Rohteil-Aufmaß, sodass das in axialer Richtung auf diesen Flächen verbleibende Rohteilmaterial je nach Flächenneigungswinkel und Wert für radiales Rohteil-Aufmaß vom angegebenen Wert abweichen könnte.

Bei einer Änderung des radialen Rohteil-Aufmaßes wird das axiale Rohteil-Aufmaß automatisch auf denselben Betrag festgelegt, sofern Sie das axiale Rohteil-Aufmaß nicht manuell eingeben.

Bei Schlichtoperationen ist der Vorgabewert 0 mm/0 Zoll, d. h., es bleibt kein Material zurück.

Bei Schruppoperationen bleibt vorgabemäßig ein geringer Materialbetrag zurück, der später durch eine oder mehrere Schlichtoperationen entfernt werden kann.

Negatives Aufmaß

Bei Verwendung eines negativen Aufmaßes wird bei der Bearbeitung mehr Material vom Rohteil entfernt als Ihre Modellform aufweist. Dies kann zum Bearbeiten von Elektroden mit einer Funkenstrecke verwendet werden, wobei die Funkenstrecke dem negativen axialen Aufmaß entspricht.

Sowohl das radiale als auch das axiale Aufmaß kann einen negativen Wert haben. Wird jedoch ein Kugel- oder Radienfräser mit negativem radialem Aufmaß verwendet, das größer ist als der Eckradius, muss das negative axiale Aufmaß kleiner oder gleich dem Eckradius sein.

Glättungsfilter

Glättet den Werkzeugweg, indem überschüssige Punkte entfernt und Bogen innerhalb der definierten Filtertoleranz angepasst werden.



Glättungsfilter aus



Glättungsfilter ein

Die Glättung dient dazu, den Umfang des Codes zu verringern, ohne dass dies auf Kosten der Genauigkeit geht. Bei der Glättung werden kollineare Linien durch eine Linie und Tangentialbogen ersetzt, um mehrere Linien in gewölbten Bereichen zu ersetzen.

Die Auswirkungen des Glättungsfilters können beträchtlich sein. Die Größe der G-Code-Datei kann um 50 % oder mehr reduziert werden. Die Maschine läuft schneller und reibungsloser, und die Oberflächengüte wird verbessert. Der Umfang der Codereduzierung hängt davon ab, wie gut sich der Werkzeugweg für die Glättung eignet. Werkzeugwege, die primär in einer Hauptebene (XY, XZ, YZ) liegen, wie z. B. parallele Werkzeugwege, lassen sich gut filtern. Bei Werkzeugwegen, auf die dies nicht zutrifft (wie 3D-HSC-Kontur), ist die Reduzierung geringer.

Glättungstoleranz:

Gibt die Toleranz des Glättungsfilters an.

Die Glättung funktioniert am besten, wenn die Toleranz (die Genauigkeit, mit der der ursprüngliche, linearisierte Werkzeugweg generiert wird) größer oder gleich der Glättungstoleranz (Linien-/Bogenanpassung) ist.

Anmerkung: Die Gesamttoleranz, oder der Abstand, um den der Werkzeugweg von der idealen Spline- oder Flächenform abweichen kann, ist die Summe aus der Schneidtoleranz und der Glättungstoleranz. Beispiel: Wenn die Schneidtoleranz auf 0,0004 Zoll und die Glättungstoleranz auf 0,0004 Zoll festgelegt ist, kann der Werkzeugweg von der ursprünglichen Spline- oder Flächenform (dem idealen Werkzeugweg) um 0,0008 Zoll abweichen.

Vorschuboptimierung

Gibt an, dass der Vorschub an den Ecken reduziert werden soll.

Maximale Richtungsänderung:

Gibt die maximal zulässige Winkeländerung vor der Vorschubreduzierung an.

Radius zur Vorschubreduzierung:

Gibt den minimal zulässigen Radius vor der Vorschubreduzierung an.

Distanz zur Vorschubreduzierung:

Gibt den Abstand an, um den der Vorschub vor einer Ecke verringert wird.

Vorschubreduzierung:

Gibt den reduzierten Vorschub bei Ecken an.

Nur Innenecken

Aktivieren Sie diese Option, um den Vorschub nur an Innenecken zu reduzieren.

Einstellungen auf der Registerkarte Verbindungen und Anfahr-Wegfahrbewegungen

Schnellvorschub-Einstellungen:

Gibt an, wann Eilgang-Bewegungen als echte Eilgang-Bewegungen (G0) und wann als Schnellvorschub-Bewegungen (G1) ausgegeben werden sollen.

Dieser Parameter wird gewöhnlich festgelegt, um Kollisionen bei Eilgängen auf Maschinen zu vermeiden, die Führungsverlängerungsbewegungen im Eilgang durchführen.

Schnellvorschub:

Der zu verwendende Vorschub für als G1 statt als G0 ausgegebene Eilgang-Bewegungen

G0-Rückzug zulassen

Bei aktivierter Option erfolgen Rückzüge als Eilgang-Bewegungen (G0). Deaktivieren Sie die Option, um Rückzüge mit Ausfahrvorschub zu erzwingen.

Sicherheitsabstand:

Mindestabstand zwischen dem Werkzeug und den Bauteilflächen während Rückzugsbewegungen. Der Abstand wird gemessen, nachdem das Aufmaß angewendet wurde. Wird also ein negatives Aufmaß verwendet, muss unbedingt sichergestellt werden, dass der Sicherheitsabstand groß genug ist, um Kollisionen zu vermeiden.

WZ unten halten

Bei aktivierter Option vermeidet die Strategie den Rückzug, wenn der Abstand zum nächsten Bereich unter dem angegebenen Flächenkontaktabstand liegt.

Maximaler Flächenkontaktabstand:

Gibt den maximal zulässigen Abstand für Bewegungen mit Flächenkontakt an.



1 Zoll Maximaler Flächenkontaktabstand



2 Zoll Maximaler Flächenkontaktabstand

Abhebhöhe:

Gibt den Abhebe-Abstand während Neupositionierungsbewegungen an.



Abhebhöhe 0



Abhebhöhe 0,1 Zoll

Einfahrt

Aktivieren zum Erstellen einer Einfahrt



Einfahrt

Horizontaler Einfahrradius:

Gibt den Radius für horizontale Einfahrbewegungen an.



Horizontaler Einfahrradius

Anfahrwinkel Geometrie:

Gibt das Sweeping des Bogens der Einfahrt an.



Sweep-Winkel 90 Grad



Sweep-Winkel 45 Grad

Lineare Einfahrdistanz:

Legt die Länge der linearen Einfahrbewegung fest, bei der die Radiuskompensation im Controller aktiviert wird.



Lineare Einfahrdistanz

Lotrecht

Ersetzt die tangentialen Verlängerungen der Einfahr-/Ausfahrbogen durch eine lotrecht zu den Bogen stehende Bewegung.



Mit lotrechter Einfahrt/Ausfahrt dargestellt

Beispiel: Eine Bohrung mit Ein-/Ausfahrt-Bogen, die so groß wie möglich sind (je größer der Bogen, desto geringer die Wahrscheinlichkeit von Verweilzeitmarkierungen), und wo eine lineare Tangente nicht möglich ist, da sie sich in die Seite der Bohrung erstrecken würde.

Vertikaler Einfahrradius:

Der Radius des vertikalen Bogens zum Glätten der Einfahrbewegung, wenn diese zum Werkzeugweg selbst erfolgt



Vertikaler Einfahrradius

Ausfahrt

Aktivieren zum Erstellen einer Ausfahrt



Ausfahrt

Wie Einfahrt

Gibt an, dass die Ausfahrtdefinition identisch zur Einfahrtdefinition sein soll.

Lineare Ausfahrdistanz:

Legt die Länge der linearen Ausfahrbewegung fest, bei der die Radiuskompensation im Controller aktiviert wird.



Lineare Ausfahrdistanz

Horizontaler Ausfahrradius:

Gibt den Radius für horizontale Ausfahrbewegungen an.



Horizontaler Ausfahrradius

Vertikaler Ausfahrradius:

Gibt den vertikalen Ausfahrradius an.



Vertikaler Ausfahrradius

Ausfahrwinkel Geometrie:

Gibt das Sweeping des Bogens der Ausfahrt an.

Lotrecht

Ersetzt die tangentialen Verlängerungen der Einfahr-/Ausfahrbogen durch eine lotrecht zu den Bogen stehende Bewegung.



Mit lotrechter Einfahrt/Ausfahrt dargestellt

Beispiel: Eine Bohrung mit Ein-/Ausfahrt-Bogen, die so groß wie möglich sind (je größer der Bogen, desto geringer die Wahrscheinlichkeit von Verweilzeitmarkierungen), und wo eine lineare Tangente nicht möglich ist, da sie sich in die Seite der Bohrung erstrecken würde.

Rampentyp:

Gibt an, wie das Werkzeug bei jedem Tiefenschnitt abgesenkt wird.



Außerhalb des Rohteils eintauchen



Zick/Zack (Rampe)

Beachten Sie die glatten Übergänge beim Typ Zick/Zack (Rampe).



Vorbohren

Zum Verwenden der Option Vorbohren müssen ein oder mehrere Startbohrungspositionen definiert werden.



Profil



Tauchfräsen



Profil glätten



Schrägung

Rampen/Helixwinkel (Grad)

Gibt den maximalen Rampenwinkel der Spirale während des Schnitts an.

Maximale Rampentiefenzustellung:

Gibt die maximale Tiefenzustellung pro Umdrehung auf dem Rampenprofil an. Über diesen Parameter kann die Werkzeuglast begrenzt werden, wenn während Rampenbewegungen Schnitte mit voller Werkzeugbreite durchgeführt werden.

Rampensicherheitshöhe

Die Höhe über dem Rohteil, bis die Spirale die Rampenbewegung beginnt.

Radialer Abstand Rampeneinfahrt:

Gibt den Mindestabstand zur Kontur für die Einfahrschrägung an.

Spiralförmiger Anstiegsdurchmesser

Der maximale Durchmesser für eine spiralförmige Einfahrt in die Kavität.

Bei einem optimalen Wert kommt es zu einer Überlappung am Mittelpunkt des Werkzeugs während zugleich die maximale Spiralbohrung für die Einfahrt in die Kavität erzeugt wird. Das Ziel ist eine gute Ausgabe der Späne. Ist der Wert größer als der Durchmesser des Werkzeugs kann eine Insel in der Mitte der Spirale stehenbleiben.

Wert von 1.8 x Durchmesser

Wert von 0.8 x Durchmesser

Minimaler Rampendurchmesser

Der kleinstmögliche Durchmesser für den Spiralanstieg.

Dieser Wert sollte stets kleiner sein als der Durchmesser des Spiralanstiegs, damit das System einen Bereich berechnen kann, der für die vorliegende Tasche oder den Kanal passt. Kleinere Durchmesser können die Spanausgabe verringern, was zu ruckartigen Maschinenbewegungen und sogar zum Bruch des Werkzeugs führen kann.

Position(en) Startbohrung(en)

Wählen Sie Punkte aus, an denen Bohrungen erstellt wurden, um den Abstand für das Schneidwerkzeug für die Einfahrt in das Material anzugeben.

Anfahrposition(en)

Wählen Sie die Geometrie nahe der Position aus, an der das Werkzeug einfahren soll.