Provides a compact representation for orientation in three space and provides methods to perform Quaternion algebra.
Public Member Functions | |
def | Conjugate (self) |
def | Equals (self, args) |
def | Exp (self) |
def | GetEuler (self) |
def | GetW (self) |
def | GetX (self) |
def | GetY (self) |
def | GetZ (self) |
def | Identity (self) |
def | Inverse (self) |
def | Invert (self) |
def | IsIdentity (self) |
def | LogN (self) |
def | MakeClosest (self, args) |
def | Minus (self, args) |
def | Normalize (self) |
def | Plus (self, args) |
def | Scalar (self) |
def | Set (self, args) |
def | SetEuler (self, args) |
def | SetW (self, args) |
def | SetX (self, args) |
def | SetY (self, args) |
def | SetZ (self, args) |
def | Vector (self) |
Public Member Functions inherited from Wrapper | |
def | GetUnwrappedPtr (self) |
Public Attributes | |
this | |
Static Public Attributes | |
tuple | thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') |
tuple | W = _swig_property(GetW, SetW) |
tuple | X = _swig_property(GetX, SetX) |
tuple | Y = _swig_property(GetY, SetY) |
tuple | Z = _swig_property(GetZ, SetZ) |
Static Public Attributes inherited from Wrapper | |
tuple | thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') |
def Conjugate | ( | self | ) |
Conjugate(Quat self) -> Quat
def Equals | ( | self, | |
args | |||
) |
Equals(Quat self, Quat a, float epsilon=1E-6) -> bool Equals(Quat self, Quat a) -> bool
def Exp | ( | self | ) |
Exp(Quat self) -> Quat
def GetEuler | ( | self | ) |
GetEuler(Quat self) -> Point3
def GetW | ( | self | ) |
GetW(Quat self) -> float
def GetX | ( | self | ) |
GetX(Quat self) -> float
def GetY | ( | self | ) |
GetY(Quat self) -> float
def GetZ | ( | self | ) |
GetZ(Quat self) -> float
def Identity | ( | self | ) |
Identity(Quat self)
def Inverse | ( | self | ) |
Inverse(Quat self) -> Quat
def Invert | ( | self | ) |
Invert(Quat self) -> Quat
def IsIdentity | ( | self | ) |
IsIdentity(Quat self) -> int
def LogN | ( | self | ) |
LogN(Quat self) -> Quat
def MakeClosest | ( | self, | |
args | |||
) |
MakeClosest(Quat self, Quat qto) -> Quat
def Minus | ( | self, | |
args | |||
) |
Minus(Quat self, Quat q) -> Quat
def Normalize | ( | self | ) |
Normalize(Quat self)
def Plus | ( | self, | |
args | |||
) |
Plus(Quat self, Quat q) -> Quat
def Scalar | ( | self | ) |
Scalar(Quat self) -> float
def Set | ( | self, | |
args | |||
) |
Set(Quat self, float X, float Y, float Z, float W) -> Quat Set(Quat self, double X, double Y, double Z, double W) -> Quat Set(Quat self, Point3 V, float W) -> Quat Set(Quat self, Matrix3 mat) -> Quat Set(Quat self, AngAxis aa) -> Quat
def SetEuler | ( | self, | |
args | |||
) |
SetEuler(Quat self, float X, float Y, float Z) -> Quat
def SetW | ( | self, | |
args | |||
) |
SetW(Quat self, float value)
def SetX | ( | self, | |
args | |||
) |
SetX(Quat self, float value)
def SetY | ( | self, | |
args | |||
) |
SetY(Quat self, float value)
def SetZ | ( | self, | |
args | |||
) |
SetZ(Quat self, float value)
def Vector | ( | self | ) |
Vector(Quat self) -> Point3