Description: Defines a set of parameters for nonlinear static analysis.
Format:
Example:
Field | Definition | Type | Default |
---|---|---|---|
ID | Identification number. | Integer > 0 | Required |
NINC | Number of increments. See Remark 2. | Integer > 0 | See Remark 2 |
DT | Incremental time interval for creep analysis. See Remark 3. | Real ≥ 0 | 0.0 |
KMETHOD | Method for controlling stiffness updates, one of the following character variables: AUTO, ITER, or SEMI. See Remark 4. | Character | AUTO |
KSTEP | Number of iterations before stiffness update for the ITER method. See Remark 5. | Integer > 0 | 5 |
MAXITER | Limit on number of iterations for each load increment. See Remark 6. | Integer > 0 or AUTO | AUTO |
CONV | Convergence criteria, one of the following character variables: U, P, or W, or any combination. See Remark 7. | Character | PW |
INTOUT | Intermediate output request, one of the following character variables: YES, NO, or ALL, or the load increment interval for output. See Remark 8. | Character or Integer > 0 | NO |
EPSU | Error tolerance for displacement (U) criterion. | Real > 0.0 | See Remark 17 |
EPSP | Error tolerance for load (P) criterion. | Real > 0.0 | See Remark 17 |
EPSW | Error tolerance for work (W) criterion. | Real > 0.0 | See Remark 17 |
MAXDIV | Limit on probable divergence conditions per iteration before the solution is assumed to diverge. See Remark 9. | Integer > 0 | 3 |
MAXUBIS | Maximum number of iterations for an upward load increment adjustment. Applicable when the load increment is bisected or the adaptive load increment/convergence method is used. See Remark 16. | Integer > 0 | See Remark 16 |
MAXLS | Maximum number of line searches for each iteration. See Remark 10. | Integer ≥ 0 | 5 |
FSTRESS | Fraction of effective stress () used to limit the subincrement size in nonlinear material routines. See Remark 11. | 0.0 < Real < 1.0 | 0.2 |
LSTOL | Line search tolerance. See Remark 10. | 0.01 < Real ≤ 0.9 | 0.2 |
MAXBIS | Maximum number of bisections allowed for each load increment. See Remark 12. | Integer > 0 | 5 |
TDG | Terminate on displacement grid point identification number. See Remark 13. | Integer > 0 | |
TDC | Terminate on displacement component number. See Remark 13. | 0 ≤ Integer ≤ 6 or MAXT or MAXR | MAXT |
MAXT Resultant of translation displacement components. MAXR Resultant of rotational displacement components. | |||
TDV | Terminate on displacement value. See Remark 13. | Real | |
MAXR | Maximum ratio for the adjusted arc-length increment relative to the initial value. See Remark 14. | 1.0 ≤ Real ≤ 40.0 | 20.0 |
RTOLB | Maximum value of incremental rotation (in degrees) allowed per iteration to activate bisection. See Remark 15. | Real > 0.0 | 20.0 |
INITINC | Initial load increment. See Remarks 2 and 16. | 0.0 < Real < 1.0 | 1/NINC |
MININC | Minimum load increment. See Remarks 2 and 16. | 0.0 < Real < 1.0 | INITINC |
MAXINC | Maximum load increment. See Remarks 2 and 16. | 0.0 < Real < 1.0 | INITINC |
TTOTAL | Total time for creep analysis. See Remark 3. | Real ≥ 0 | 0.0 |
Remarks:
Variable | Value |
---|---|
INITINC | 1.0E-2 |
MININC | 1.0E-3 |
MAXINC | 0.3 |
INTOUT | Output Processed |
---|---|
YES | For every computed load increment excluding bisected and quadsected load increments |
NO | For the last load of the subcase |
ALL | For every computed load increment including bisected and quadsected load increments |
n | For computed load increments n , 2 * n , 3 * n ,…, and the last converged increment |
Depending on the divergence rate, the number of diverging iterations (NDIV) is incremented as follows:
The solution is assumed to diverge when NDIV ≥ MAXDIV. If the solution diverges and the load increment cannot be further bisected (i.e., MAXBIS is attained), execution terminates with a fatal error.
where is the arc-length at step n and is the original arc-length. The arc-length method for load increments is selected by an NLPCI Bulk Data entry. This entry must have the same ID as the NLPARM Bulk Data entry.
NLTOL | Level of Accuracy | EPSU | EPSP | EPSW |
---|---|---|---|---|
0 | Very High | 1.0E-3 | 1.0E-3 | 1.0E-6 |
1 | High | 1.0E-2 | 1.0E-2 | 1.0E-4 |
2 | Engineering | 1.0E-2 | 1.0E-2 | 1.0E-3 |
3 | Preliminary Design | 1.0E-1 | 1.0E-1 | 1.0E-2 |
Default | Engineering | 1.0E-2 | 1.0E-2 | 1.0E-3 |
NLTOL | Level of Accuracy | EPSU | EPSP | EPSW |
---|---|---|---|---|
0 | Very High | 1.0E-4 | 1.0E-4 | 1.0E-8 |
1 | High | 5.0E-4 | 5.0E-4 | 1.0E-8 |
2 | Engineering | 5.0E-4 | 5.0E-4 | 1.0E-7 |
3 | Preliminary Design | 1.0E-3 | 1.0E-3 | 1.0E-6 |
Default | Engineering | 5.0E-4 | 5.0E-4 | 1.0E-7 |
NLTOL | Level of Accuracy | EPSU | EPSP | EPSW |
---|---|---|---|---|
0 | Very High | 1.0E-3 | 1.0E-3 | 1.0E-6 |
1 | High | 1.0E-3 | 1.0E-3 | 1.0E-5 |
2 | Engineering | 5.0E-3 | 5.0E-3 | 1.0E-4 |
3 | Preliminary Design | 5.0E-3 | 5.0E-3 | 1.0E-4 |
Default | Engineering | 5.0E-3 | 5.0E-3 | 1.0E-4 |
NLTOL | Level of Accuracy | EPSU | EPSP | EPSW |
---|---|---|---|---|
0 | Very High | 1.0E-3 | 1.0E-3 | 1.0E-6 |
1 | High | 1.0E-3 | 1.0E-3 | 1.0E-6 |
2 | Engineering | 1.0E-3 | 1.0E-3 | 1.0E-6 |
3 | Preliminary Design | 1.0E-3 | 1.0E-3 | 1.0E-6 |
Default | Engineering | 1.0E-3 | 1.0E-3 | 1.0E-6 |