3ds Max C++ API Reference
Loading...
Searching...
No Matches
DMatrix3 Class Reference

#include <dmatrix3.h>

Public Member Functions

 DMatrix3 ()
 Constructor.
 
 DMatrix3 (const DMatrix3 &)=default
 
 DMatrix3 (DMatrix3 &&)=default
 
DMatrix3operator= (const DMatrix3 &)=default
 
DMatrix3operator= (DMatrix3 &&)=default
 
const DPoint3operator[] (int i) const
 Returns a reference to the 'i-th' DPoint3 of the matrix.
 
void SetNotIdent ()
 This clears the MAT_IDENT flag to indicate the matrix is not the identity.
 
void SetIdentFlags (uint32_t f)
 This sets the specified identity flag(s).
 
uint32_t GetIdentFlags () const
 Returns the identity flags.
 
void ClearIdentFlag (uint32_t f)
 Clears the specified identity flag(s).
 
bool IsIdentity () const
 Returns TRUE if the matrix is the identity matrix (based on the flags); otherwise FALSE.
 
void ValidateFlags ()
 This method may be used to recompute the *_IDENT flags for this matrix.
 
DMRowGetAddr ()
 
const DMRowGetAddr () const
 Returns the address of this DMatrix3.
 
 MAX_DEPRECATE_MATRIX_BOOL_CTOR ("Matrix3 and DMatrix3 are now initialized to identity by default.\n" "No need to use the DMatrix3(bool) constructor anymore.\n" "Define MAX_SILENCE_DEPRECATED_MATRIX_BOOL_CTOR to silence this warning.") DMatrix3(bool)
 Constructor, Unused.
 
 DMatrix3 (const DPoint3 &row0, const DPoint3 &row1, const DPoint3 &row2, const DPoint3 &row3)
 Constructor.
 
DMatrix3Set (const DPoint3 &row0, const DPoint3 &row1, const DPoint3 &row2, const DPoint3 &row3)
 Initializes the matrix with the row data passed and validates the matrix flags.
 
int operator== (const DMatrix3 &m) const
 Compares the elements of this matrix and the one specified element by element for exact equality.
 
bool operator!= (const DMatrix3 &mat) const
 Compares the elements of this matrix and the one specified element by element for inequality.
 
int Equals (const DMatrix3 &m, double epsilon=1E-12) const
 Compares the elements of this matrix and the one specified element by element for equality within the specified tolerance epsilon.
 
DMatrix3operator-= (const DMatrix3 &m)
 Subtracts a DMatrix3 from this DMatrix3.
 
DMatrix3operator+= (const DMatrix3 &m)
 Adds a DMatrix3 to this DMatrix3.
 
DMatrix3operator*= (const DMatrix3 &m)
 Multiplies this DMatrix3 by the specified DMatrix3 (*this = (*this)*M;).
 
DMatrix3operator*= (double a)
 Multiplies each element of this DMatrix3 by a double.
 
void IdentityMatrix ()
 Set this matrix to the Identity Matrix.
 
void Zero ()
 This method sets all elements of the matrix to 0.0f.
 
DPoint3 GetRow (int i) const
 Returns the specified row of this matrix.
 
void SetRow (int i, DPoint3 p)
 Sets the specified row of this matrix to the specified values.
 
Point4 GetColumn (int i) const
 Returns the 'i-th' column of this matrix.
 
void SetColumn (int i, Point4 col)
 Sets the 'i-th' column of this matrix to the specified values.
 
DPoint3 GetColumn3 (int i) const
 Returns the upper three entries in the specified column.
 
void NoTrans ()
 This method zeros the translation portion of this matrix.
 
void NoRot ()
 This method zeros the rotation and scale portion of this matrix.
 
void NoScale ()
 This method zeros the scale portion of this matrix without orthogonalization.
 
void Orthogonalize ()
 Ortho-normalize the matrix.
 
void SetTrans (const DPoint3 &p)
 Sets the translation row of this matrix to the specified values.
 
void SetTrans (int i, double v)
 Sets the specified component of the translation row of this matrix to the specified value.
 
const DPoint3GetTrans () const
 Returns the translation row of this matrix.
 
void Translate (const DPoint3 &p)
 Apply an incremental translation transformation to this matrix.
 
void RotateX (double angle)
 Apply an incremental X rotation transformation to this matrix.
 
void RotateY (double angle)
 Apply an incremental Y rotation transformation to this matrix.
 
void RotateZ (double angle)
 Apply an incremental Z rotation transformation to this matrix.
 
void Scale (const DPoint3 &s, bool trans=false)
 Apply an incremental scaling transformation to this matrix.
 
void PreTranslate (const DPoint3 &p)
 Apply an incremental translation transformation to this matrix.
 
void PreRotateX (double angle)
 Apply an incremental X rotation transformation to this matrix.
 
void PreRotateY (double angle)
 Apply an incremental Y rotation transformation to this matrix.
 
void PreRotateZ (double angle)
 Apply an incremental Z rotation transformation to this matrix.
 
void PreScale (const DPoint3 &s)
 Apply an incremental scaling transformation to this matrix.
 
void SetTranslate (const DPoint3 &p)
 Sets this matrix to the identity and the translation components to the specified values.
 
void SetRotateX (double angle)
 Sets this matrix to the identity and the rotation components to the specified X rotation.
 
void SetRotateY (double angle)
 Sets this matrix to the identity and the rotation components to the specified Y rotation.
 
void SetRotateZ (double angle)
 Sets this matrix to the identity and the rotation components to the specified Z rotation.
 
void SetRotate (const Quat &q)
 Sets the rotation components of the matrix as specified by the quaternion.
 
void SetRotate (const AngAxis &aa)
 Sets the rotation components of the matrix as specified by the AngAxis.
 
void SetRotate (double yaw, double pitch, double roll)
 Sets the rotation components of this matrix using yaw, pitch and roll angles.
 
void SetAngleAxis (const DPoint3 &axis, double angle)
 Sets the rotation portion of the matrix to the rotation specified by the angle and axis and sets the translation portion to zeros.
 
void SetScale (const DPoint3 &s)
 Sets the scale components of this matrix to the specified values.
 
void SetFromToUp (const DPoint3 &from, const DPoint3 &to, const DPoint3 &up)
 This creates a matrix describing a viewpoint which is at the 'from' location, looking toward the 'to' location; the viewpoint is tilted so that the 'up' vector points to the top of the view.
 
void Invert ()
 This method performs an in-place inversion on this matrix.
 
DMatrix3 operator* (const DMatrix3 &) const
 Perform matrix multiplication.
 
DMatrix3 operator+ (const DMatrix3 &) const
 Perform matrix addition.
 
DMatrix3 operator- (const DMatrix3 &) const
 Perform matrix subtraction.
 
DPoint3 PointTransform (const DPoint3 &p) const
 Returns the specified point transformed by this matrix.
 
DPoint3 VectorTransform (const DPoint3 &p) const
 Returns the specified vector transformed by this matrix.
 
void TransformPoints (DPoint3 *array, int n, int stride=sizeof(DPoint3))
 Transforms the specified list of points with this matrix.
 
void TransformPoints (const DPoint3 *array, DPoint3 *to, int n, int stride=sizeof(DPoint3), int strideTo=sizeof(DPoint3))
 Transforms the specified list of points with this matrix and stores the resulting transformed points in the storage passed.
 
void TransformVectors (DPoint3 *array, int n, int stride=sizeof(DPoint3))
 Transforms the specified list of vectors with this matrix.
 
void TransformVectors (const DPoint3 *array, DPoint3 *to, int n, int stride=sizeof(DPoint3), int strideTo=sizeof(DPoint3))
 Transforms the specified list of vectors with this matrix and stores the resulting transformed vectors in the storage passed.
 
void GetYawPitchRoll (double *yaw, double *pitch, double *roll)
 Retrieves the yaw, pitch and roll angles represented by the rotation in this matrix.
 
UTILGEOMEXPORT IOResult Save (ISave *isave)
 Save this DMatrix3 to disk.
 
UTILGEOMEXPORT IOResult Load (ILoad *iload)
 Load the data for this DMatrix3.
 
bool Parity () const
 Returns the 'parity' of the matrix.
 
Matrix3 ToMatrix3 ()
 Converts to a Matrix3.
 
void FromMatrix3 (const Matrix3 &tm)
 Copies a matrix3 into the DMatrix3

 

Static Public Attributes

static const DMatrix3 Identity
 An global instance of DMatrix3 set to the identity.
 

Friends

class Quat
 
DMatrix3 RotateXMatrix (double angle)
 Builds a new matrix for use as a X rotation transformation.
 
DMatrix3 RotateYMatrix (double angle)
 Builds a new matrix for use as a Y rotation transformation.
 
DMatrix3 RotateZMatrix (double angle)
 Builds a new matrix for use as a Z rotation transformation.
 
DMatrix3 TransMatrix (const DPoint3 &p)
 Builds a new matrix for use as a translation transformation.
 
DMatrix3 ScaleMatrix (const DPoint3 &s)
 Builds a new matrix for use as a scale transformation.
 
DMatrix3 RotateYPRMatrix (double yaw, double pitch, double roll)
 Builds a new matrix for use as a rotation transformation by specifying yaw, pitch and roll angles.
 
DMatrix3 RotAngleAxisMatrix (const DPoint3 &axis, double angle)
 Builds a new matrix for use as a rotation transformation by specifying an angle and axis.
 
DMatrix3 Inverse (const DMatrix3 &m)
 Return the inverse of the matrix.
 
DPoint3 operator* (const DMatrix3 &a, const DPoint3 &v)
 These transform a DPoint3 with a DMatrix3.
 
DPoint3 operator* (const DPoint3 &v, const DMatrix3 &a)
 These transform a DPoint3 with a DMatrix3.
 
DPoint3 VectorTransform (const DMatrix3 &m, const DPoint3 &v)
 Transform the vector (DPoint3) with the specified matrix.
 
DMatrix3 XFormMat (const DMatrix3 &xm, const DMatrix3 &m)
 This method is used to build a matrix that constructs a transformation in a particular space.
 
DPoint3 VectorTransform (const DPoint3 &v, const DMatrix3 &m)
 
void MatrixMultiply (DMatrix3 &outMatrix, const DMatrix3 &matrixA, const DMatrix3 &matrixB)
 Same as Maxtrix3::operator[].
 
void Inverse (DMatrix3 &outMatrix, const DMatrix3 &m)
 Same as Maxtrix3::Inverse.
 

Detailed Description

See also
Class DPoint3, Class Matrix3, Class Quat, Class AngAxis, Structure AffineParts, Class BigMatrix.

Description: This class implements a 4x3 3D transformation matrix object. Methods are provided to zero the matrix, set it to the identity, compute its inverse, apply incremental translation, rotation and scaling, and build new X, Y and Z rotation matrices. Concatenation Operators are provided for matrix addition, subtraction, and multiplication. All methods are implemented by the system.

Note: In 3ds Max, all vectors are assumed to be row vectors. Under this assumption, multiplication of a vector with a matrix can be written either way (Matrix*Vector or Vector*Matrix), for ease of use, and the result is the same – the (row) vector transformed by the matrix. Data Members: private:

double m[4][3];

Matrix storage.

uint32_t flags;

Matrix Identity Flags.

POS_IDENT

Indicates the translation row of the matrix is the identity.

ROT_IDENT

Indicates the rotation elements of the matrix are the identity.

SCL_IDENT

Indicates the scale elements of the matrix are the identity.

MAT_IDENT

Indicates the matrix is the identity matrix. This is equivalent to (POS_IDENT|ROT_IDENT|SCL_IDENT).

Constructor & Destructor Documentation

◆ DMatrix3() [1/4]

DMatrix3 ( )

Constructor.

Matrix is initialized to Identity.

◆ DMatrix3() [2/4]

DMatrix3 ( const DMatrix3 )
default

◆ DMatrix3() [3/4]

DMatrix3 ( DMatrix3 &&  )
default

◆ DMatrix3() [4/4]

DMatrix3 ( const DPoint3 row0,
const DPoint3 row1,
const DPoint3 row2,
const DPoint3 row3 
)

Constructor.

Initializes the matrix with the row data passed and validates the matrix flags.

Parameters
row0The data for row 0.
row1The data for row 1.
row2The data for row 2.
row3The data for row 3.

Member Function Documentation

◆ operator=() [1/2]

DMatrix3 & operator= ( const DMatrix3 )
default

◆ operator=() [2/2]

DMatrix3 & operator= ( DMatrix3 &&  )
default

◆ operator[]()

const DPoint3 & operator[] ( int  i) const

Returns a reference to the 'i-th' DPoint3 of the matrix.

◆ SetNotIdent()

void SetNotIdent ( )

This clears the MAT_IDENT flag to indicate the matrix is not the identity.

Non-const GetAddr() calls this for you.

◆ SetIdentFlags()

void SetIdentFlags ( uint32_t  f)

This sets the specified identity flag(s).

Parameters
fSpecifies the identity flag bit(s) to set. See Matrix Identity Flags above.

◆ GetIdentFlags()

uint32_t GetIdentFlags ( ) const

Returns the identity flags.

◆ ClearIdentFlag()

void ClearIdentFlag ( uint32_t  f)

Clears the specified identity flag(s).

See Matrix Identity Flags above.

Parameters
fSpecifies the identity flag bit(s) to clear.

◆ IsIdentity()

bool IsIdentity ( ) const

Returns TRUE if the matrix is the identity matrix (based on the flags); otherwise FALSE.

◆ ValidateFlags()

void ValidateFlags ( )

This method may be used to recompute the *_IDENT flags for this matrix.

For instance, if you call a method, such as INode::GetObjTMAfterWSM(), and it returns a matrix, you cannot use the IsIdentity() method to check if the matrix is indeed the identity. This is because the flags that method checks are not initialized by the INode method. What you can do however is call this method first. This will validate the flags in the matrix so they accuratly reflect the properties of the matrix. If after calling this method, and then calling IsIdentity(), the proper result would be returned.

◆ GetAddr() [1/2]

DMRow * GetAddr ( )
Remarks
Returns the address of this DMatrix3.

The DMatrix3 class keeps flags indicating identity for rotation, scale, position, and the matrix as a whole, and thus the direct access via the [] operator is restricted to prevent developers from modifying the matrix without updating the flags. This method, GetAddr(), still lets you get at the matrix itself and then you can use the [] operator on the result.
Note: GetAddr() always calls SetNotIdent(), which clears all IDENT flags. If you want to re-enable some optimizations, you can use SetIdentFlags() to mark identity components after this call.

Also Note: typedef double DMRow[3];
Returns
The address of the DMatrix3.

◆ GetAddr() [2/2]

const DMRow * GetAddr ( ) const

Returns the address of this DMatrix3.



This provides read-only access to the DMatrix3 elements as a 2 dimentional array.

Also Note: typedef double DMRow[3];

◆ MAX_DEPRECATE_MATRIX_BOOL_CTOR()

MAX_DEPRECATE_MATRIX_BOOL_CTOR ( "Matrix3 and DMatrix3 are now initialized to identity by default.\n" "No need to use the DMatrix3(bool) constructor anymore.\n" "Define MAX_SILENCE_DEPRECATED_MATRIX_BOOL_CTOR to silence this warning."  )

Constructor, Unused.

The default constructor now initializes the matrix to identity. Kept for backward compatibility.

◆ Set()

DMatrix3 & Set ( const DPoint3 row0,
const DPoint3 row1,
const DPoint3 row2,
const DPoint3 row3 
)

Initializes the matrix with the row data passed and validates the matrix flags.

Parameters
row0The data for row 0.
row1The data for row 1.
row2The data for row 2.
row3The data for row 3.
Returns
A reference to this matrix.

◆ operator==()

int operator== ( const DMatrix3 m) const

Compares the elements of this matrix and the one specified element by element for exact equality.

Returns nonzero if they are equal; otherwise zero.

Parameters
mThe matrix to compare against.

◆ operator!=()

bool operator!= ( const DMatrix3 mat) const

Compares the elements of this matrix and the one specified element by element for inequality.

Returns false iff they are unequal.

Parameters
matThe matrix to compare against.

◆ Equals()

int Equals ( const DMatrix3 m,
double  epsilon = 1E-12 
) const

Compares the elements of this matrix and the one specified element by element for equality within the specified tolerance epsilon.

Returns nonzero if they are 'equal'; otherwise zero.

Parameters
mThe matrix to compare against.
epsilonThe tolerance for comparison. If the values in the matrix are within this value (+ epsilon or - epsilon) they are considered equal.

◆ operator-=()

DMatrix3 & operator-= ( const DMatrix3 m)

Subtracts a DMatrix3 from this DMatrix3.

◆ operator+=()

DMatrix3 & operator+= ( const DMatrix3 m)

Adds a DMatrix3 to this DMatrix3.

◆ operator*=() [1/2]

DMatrix3 & operator*= ( const DMatrix3 m)

Multiplies this DMatrix3 by the specified DMatrix3 (*this = (*this)*M;).

Multiply this matrix on the right by Matrix m.

DMatrix3 tm1, tm2;
DMatrix3 tm3 = tm1 * tm2; // Is equivalent to the below
tm1 *= tm2; // tm1 now equals tm3
Definition: dmatrix3.h:70
Parameters
mThe matrix multiplied to the right of this matrix
Returns
A reference to this matrix

◆ operator*=() [2/2]

DMatrix3 & operator*= ( double  a)

Multiplies each element of this DMatrix3 by a double.

DMatrix3 tm1(1), tm2(2);
tm1 *= 0.7f; // This multiplies all elements by 0.7f
tm2.Scale(DPoint3(0.7f, 0.7f, 0.7f), TRUE); // This multiplies all elements by 0.7f
tm1 == tm2; // is true
class DPoint3 Description: This class describes a 3D point using double precision x,...
Definition: dpoint3.h:25
Parameters
aThe scale to apply to each element of this matrix
Returns
a reference to this matrix

◆ IdentityMatrix()

void IdentityMatrix ( )

Set this matrix to the Identity Matrix.

◆ Zero()

void Zero ( )

This method sets all elements of the matrix to 0.0f.

◆ GetRow()

DPoint3 GetRow ( int  i) const

Returns the specified row of this matrix.

Parameters
iSpecifies the row to retrieve.

◆ SetRow()

void SetRow ( int  i,
DPoint3  p 
)

Sets the specified row of this matrix to the specified values.

Parameters
iSpecifies the row to set.
pThe values to set.

◆ GetColumn()

Point4 GetColumn ( int  i) const

Returns the 'i-th' column of this matrix.

Parameters
iSpecifies the column to get (0-2).

◆ SetColumn()

void SetColumn ( int  i,
Point4  col 
)

Sets the 'i-th' column of this matrix to the specified values.

Note : Clears the matrix flags.

Parameters
iSpecifies the column to set (0-2).
colThe values to set.

◆ GetColumn3()

DPoint3 GetColumn3 ( int  i) const

Returns the upper three entries in the specified column.

Parameters
iSpecifies the partial column to get (0-2).

◆ NoTrans()

void NoTrans ( )

This method zeros the translation portion of this matrix.

◆ NoRot()

void NoRot ( )

This method zeros the rotation and scale portion of this matrix.

◆ NoScale()

void NoScale ( )

This method zeros the scale portion of this matrix without orthogonalization.

If the matrix was sheared (skewed) then this method is not able to remove the scale component completely. In that case, use the Orthogonalize() method instead to remove the scale component entirely. Read the SCL_IDENT flag to check whether the NoScale() method was enough to make the matrix to be orthogonal (with perpendicular axes of unit length).

◆ Orthogonalize()

void Orthogonalize ( )

Ortho-normalize the matrix.

This ensures that each axis of the basis is of length 1 and at right angles to the other. This is an "unbiased" orthogonalization, which means that no single axis is used as the basis for the other axis, and all axis will be modified equally.

Note
This is an iterative process, and should not be used in high-performance situations. It seems to take a maximum of 4 iterations to converge.

◆ SetTrans() [1/2]

void SetTrans ( const DPoint3 p)

Sets the translation row of this matrix to the specified values.

The POS_IDENT flag is cleared.

Parameters
pSpecifies the values for the translation row.

◆ SetTrans() [2/2]

void SetTrans ( int  i,
double  v 
)

Sets the specified component of the translation row of this matrix to the specified value.

The POS_IDENT flag is cleared.

Parameters
iSpecifies the component of the translation row of this matrix to set.
vThe value to set.

◆ GetTrans()

const DPoint3 & GetTrans ( ) const

Returns the translation row of this matrix.

Returns
The translation row of this matrix.

◆ Translate()

void Translate ( const DPoint3 p)

Apply an incremental translation transformation to this matrix.

This is equivalent to multiplying on the RIGHT by the transform.

Parameters
pSpecifies the translation.

◆ RotateX()

void RotateX ( double  angle)

Apply an incremental X rotation transformation to this matrix.

This is equivalent to multiplying on the RIGHT by the transform.

Parameters
angleSpecifies the X rotation in radians.

◆ RotateY()

void RotateY ( double  angle)

Apply an incremental Y rotation transformation to this matrix.

This is equivalent to multiplying on the RIGHT by the transform.

Parameters
angleSpecifies the Y rotation in radians.

◆ RotateZ()

void RotateZ ( double  angle)

Apply an incremental Z rotation transformation to this matrix.

This is equivalent to multiplying on the RIGHT by the transform.

Parameters
angleSpecifies the Z rotation in radians.

◆ Scale()

void Scale ( const DPoint3 s,
bool  trans = false 
)

Apply an incremental scaling transformation to this matrix.

This is equivalent to multiplying on the RIGHT by the transform.

Parameters
sThe scale values.
transIf set to TRUE, the translation component is scaled. If trans = FALSE the translation component is unaffected. When 3ds Max was originally written there was a bug in the code for this method where the translation portion of the matrix was not being scaled. This meant that when a matrix was scaled the bottom row was not scaled. Thus it would always scale about the local origin of the object, but it would scale the world axes. When this bug was discovered, dependencies existed in the code upon this bug. Thus it could not simply be fixed because it would break the existing code that depended upon it working the incorrect way. To correct this the trans parameter was added. If this is set to TRUE, the translation component will be scaled correctly. The existing plug-ins don't use this parameter, it defaults to FALSE, and the code behaves the old way.

◆ PreTranslate()

void PreTranslate ( const DPoint3 p)

Apply an incremental translation transformation to this matrix.

This is equivalent to multiplying on the LEFT by the transform. param p Specifies the translation distance.

◆ PreRotateX()

void PreRotateX ( double  angle)

Apply an incremental X rotation transformation to this matrix.

This is equivalent to multiplying on the LEFT by the transform.

Parameters
angleSpecifies the X rotation in radians.

◆ PreRotateY()

void PreRotateY ( double  angle)

Apply an incremental Y rotation transformation to this matrix.

This is equivalent to multiplying on the LEFT by the transform.

Parameters
angleSpecifies the Y rotation in radians.

◆ PreRotateZ()

void PreRotateZ ( double  angle)

Apply an incremental Z rotation transformation to this matrix.

This is equivalent to multiplying on the LEFT by the transform.

Parameters
angleSpecifies the Z rotation in radians.

◆ PreScale()

void PreScale ( const DPoint3 s)

Apply an incremental scaling transformation to this matrix.

This is equivalent to multiplying on the LEFT by the transform.

Parameters
sThe scale values. The translation component is unaffected.

◆ SetTranslate()

void SetTranslate ( const DPoint3 p)

Sets this matrix to the identity and the translation components to the specified values.

Parameters
pThe translation values to store.

◆ SetRotateX()

void SetRotateX ( double  angle)

Sets this matrix to the identity and the rotation components to the specified X rotation.

Parameters
angleThe angle for X rotation (in radians).

◆ SetRotateY()

void SetRotateY ( double  angle)

Sets this matrix to the identity and the rotation components to the specified Y rotation.

Parameters
angleThe angle for Y rotation (in radians).

◆ SetRotateZ()

void SetRotateZ ( double  angle)

Sets this matrix to the identity and the rotation components to the specified Z rotation.

Parameters
angleThe angle for Z rotation (in radians).

◆ SetRotate() [1/3]

void SetRotate ( const Quat q)

Sets the rotation components of the matrix as specified by the quaternion.

The translation and scale components will match the identity matrix.

Parameters
qSpecifies the rotation to use for the matrix.

◆ SetRotate() [2/3]

void SetRotate ( const AngAxis aa)

Sets the rotation components of the matrix as specified by the AngAxis.

The translation and scale components will match the identity matrix.

Parameters
aaSpecifies the rotation to use for the matrix.

◆ SetRotate() [3/3]

void SetRotate ( double  yaw,
double  pitch,
double  roll 
)

Sets the rotation components of this matrix using yaw, pitch and roll angles.

There are many different conventions for specifying a rotation by means of three Euler angles. This function uses the convention of rotating around the world Z axis, then the X axis, then the Y axis; the three arguments are given in the order Y, X, Z.

This one is equivalent to:

M.IdentityMatrix();

M.RotateZ(roll);

M.RotateX(pitch);

M.RotateY(yaw);

–Which presupposes Y is vertical, X is sideways, Z is forward

Parameters
yawThe yaw angle in radians.
pitchThe pitch angle in radians.
rollThe roll angle in radians.

◆ SetAngleAxis()

void SetAngleAxis ( const DPoint3 axis,
double  angle 
)

Sets the rotation portion of the matrix to the rotation specified by the angle and axis and sets the translation portion to zeros.

Parameters
axisThe axis of rotation.
angleThe angle of rotation about the axis in radians.

◆ SetScale()

void SetScale ( const DPoint3 s)

Sets the scale components of this matrix to the specified values.

The other components to this matrix will match the identity.

Parameters
sThe scale factors for the matrix.

◆ SetFromToUp()

void SetFromToUp ( const DPoint3 from,
const DPoint3 to,
const DPoint3 up 
)

This creates a matrix describing a viewpoint which is at the 'from' location, looking toward the 'to' location; the viewpoint is tilted so that the 'up' vector points to the top of the view.

Parameters
fromThis specifies the viewpoint source location.
toThis vector specifies the direction of view.
upThis vector points to the top of the view.

◆ Invert()

void Invert ( )

This method performs an in-place inversion on this matrix.

An inverted matrix, when multiplied by the original, yields the identity.

◆ operator*()

DMatrix3 operator* ( const DMatrix3 ) const

Perform matrix multiplication.

◆ operator+()

DMatrix3 operator+ ( const DMatrix3 ) const

Perform matrix addition.

◆ operator-()

DMatrix3 operator- ( const DMatrix3 ) const

Perform matrix subtraction.

◆ PointTransform()

DPoint3 PointTransform ( const DPoint3 p) const

Returns the specified point transformed by this matrix.

Parameters
pThe point to transform by this matrix.

◆ VectorTransform()

DPoint3 VectorTransform ( const DPoint3 p) const

Returns the specified vector transformed by this matrix.

Parameters
pThe vector to transform by this matrix.

◆ TransformPoints() [1/2]

void TransformPoints ( DPoint3 array,
int  n,
int  stride = sizeof(DPoint3) 
)

Transforms the specified list of points with this matrix.

Parameters
arrayThe array of points to transform with this matrix.
nThe number of points in the array.
strideThe size of the increment used when moving to the next point. If you wish to transform an array of data objects which contain x, y, and z coordinates in order (such as a Point4, or a structure containing a DPoint3 as a member) you can specify a 'stride' value (for instance sizeof(data_object)).

◆ TransformPoints() [2/2]

void TransformPoints ( const DPoint3 array,
DPoint3 to,
int  n,
int  stride = sizeof(DPoint3),
int  strideTo = sizeof(DPoint3) 
)

Transforms the specified list of points with this matrix and stores the resulting transformed points in the storage passed.

Parameters
arrayThe array of points to transform (the source).
toThe array to store the transformed points (the destination).
nThe number of points in the source array.
strideThe size increment used when moving to the next source location.
strideToThe size increment used when moving to the next storage location.

◆ TransformVectors() [1/2]

void TransformVectors ( DPoint3 array,
int  n,
int  stride = sizeof(DPoint3) 
)

Transforms the specified list of vectors with this matrix.

Parameters
arrayThe array of vectors to transform with this matrix.
nThe number of vectors in the array.
strideThe size of the increment used when moving to the next vector. If you wish to transform an array of data objects which contain x, y, and z coordinates in order (such as a Point4, or a structure containing a DPoint3 as a member) you can specify a 'stride' value (for instance sizeof(data_object)).

◆ TransformVectors() [2/2]

void TransformVectors ( const DPoint3 array,
DPoint3 to,
int  n,
int  stride = sizeof(DPoint3),
int  strideTo = sizeof(DPoint3) 
)

Transforms the specified list of vectors with this matrix and stores the resulting transformed vectors in the storage passed.

Parameters
*arrayThe array of vectors to transform (the source).
toThe array to store the transformed vectors (the destination).
nThe number of vectors in the source array.
strideThe size increment used when moving to the next source location.
strideToThe size increment used when moving to the next storage location.

◆ GetYawPitchRoll()

void GetYawPitchRoll ( double *  yaw,
double *  pitch,
double *  roll 
)

Retrieves the yaw, pitch and roll angles represented by the rotation in this matrix.

Parameters
yawThe yaw rotation angle is stored here (in radians).
pitchThe pitch rotation angle is stored here (in radians).
rollThe roll rotation angle is stored here (in radians).

◆ Save()

UTILGEOMEXPORT IOResult Save ( ISave isave)

Save this DMatrix3 to disk.

Parameters
isaveThe interface responsible for actually saving the data
Returns
IO_OK on success, or a failure code
Remarks
Save and Load are only forward declared in this header! If you need to use Save or Load, you must link with maxutil, which is where these methods are implemented. This way, geom.dll is independent from maxsdk.

◆ Load()

UTILGEOMEXPORT IOResult Load ( ILoad iload)

Load the data for this DMatrix3.

Parameters
iloadThe interface responsible for actually loading the data
Returns
IO_OK on success, or a failure code
Remarks
Save and Load are only forward declared in this header! If you need to use Save or Load, you must link with maxutil, which is where these methods are implemented. This way, geom.dll is independent from maxsdk.

◆ Parity()

bool Parity ( ) const

Returns the 'parity' of the matrix.

Scaling one axis of the matrix negatively switches the 'parity'. However if you scale two axis the parity will flip back. Scaling three axis switches the parity again.

When rendering a mesh, if you scale something along one axis, it turns 'inside out'. That is the direction when the normals are reversed. This method may be used to detect that case and then reverse the normals. The 3ds Max renderer does this – if this method returns TRUE it flips all the normals so it won't turn inside out.

◆ ToMatrix3()

Matrix3 ToMatrix3 ( )

Converts to a Matrix3.

Returns
the concersion to Matrix3

◆ FromMatrix3()

void FromMatrix3 ( const Matrix3 tm)

Copies a matrix3 into the DMatrix3

Friends And Related Function Documentation

◆ Quat

friend class Quat
friend

◆ RotateXMatrix

DMatrix3 RotateXMatrix ( double  angle)
friend

Builds a new matrix for use as a X rotation transformation.

Parameters
angleSpecifies the angle of rotation in radians.
Returns
A new X rotation DMatrix3.

◆ RotateYMatrix

DMatrix3 RotateYMatrix ( double  angle)
friend

Builds a new matrix for use as a Y rotation transformation.

Parameters
angleSpecifies the angle of rotation in radians.
Returns
A new Y rotation DMatrix3.

◆ RotateZMatrix

DMatrix3 RotateZMatrix ( double  angle)
friend

Builds a new matrix for use as a Z rotation transformation.

Parameters
angleSpecifies the angle of rotation in radians.
Returns
A new Z rotation DMatrix3.

◆ TransMatrix

DMatrix3 TransMatrix ( const DPoint3 p)
friend

Builds a new matrix for use as a translation transformation.

Parameters
pSpecifies the translation values.
Returns
A new translation DMatrix3.

◆ ScaleMatrix

DMatrix3 ScaleMatrix ( const DPoint3 s)
friend

Builds a new matrix for use as a scale transformation.

Parameters
sSpecifies the scale values.
Returns
A new scale DMatrix3.

◆ RotateYPRMatrix

DMatrix3 RotateYPRMatrix ( double  yaw,
double  pitch,
double  roll 
)
friend

Builds a new matrix for use as a rotation transformation by specifying yaw, pitch and roll angles.



This definition will depend on what our coordinate system is. This one is equivalent to:

M.IdentityMatrix();
M.RotateZ(roll);
M.RotateX(pitch);
M.RotateY(yaw);

Which presupposes Y is vertical, X is sideways, Z is forward

Parameters
yawSpecifies the yaw angle in radians.
pitchSpecifies the pitch angle in radians.
rollSpecifies the roll angle in radians.
Returns
A new rotation DMatrix3.

◆ RotAngleAxisMatrix

DMatrix3 RotAngleAxisMatrix ( const DPoint3 axis,
double  angle 
)
friend

Builds a new matrix for use as a rotation transformation by specifying an angle and axis.

Parameters
axisSpecifies the axis of rotation. Note that this angle is expected to be normalized.
angleSpecifies the angle of rotation. Note: The direction of the angle in this method is opposite of that in AngAxisFromQ().
Returns
A new rotation DMatrix3.

◆ Inverse [1/2]

DMatrix3 Inverse ( const DMatrix3 m)
friend

Return the inverse of the matrix.

Parameters
mThe matrix to compute the inverse of.

◆ operator* [1/2]

DPoint3 operator* ( const DMatrix3 a,
const DPoint3 v 
)
friend

These transform a DPoint3 with a DMatrix3.

These two versions of transforming a point with a matrix do the same thing, regardless of the order of operands (linear algebra rules notwithstanding).

Parameters
aThe matrix to transform the point with.
vThe point to transform.
Returns
The transformed DPoint3.

◆ operator* [2/2]

DPoint3 operator* ( const DPoint3 v,
const DMatrix3 a 
)
friend

These transform a DPoint3 with a DMatrix3.

These two versions of transforming a point with a matrix do the same thing, regardless of the order of operands (linear algebra rules notwithstanding).

Parameters
vThe point to transform.
aThe matrix to transform the point with.
Returns
The transformed DPoint3.

◆ VectorTransform [1/2]

DPoint3 VectorTransform ( const DMatrix3 m,
const DPoint3 v 
)
friend

Transform the vector (DPoint3) with the specified matrix.

Parameters
mThe matrix to transform the vector with.
vThe vector to transform.
Returns
The transformed vector (as a DPoint3).

◆ XFormMat

DMatrix3 XFormMat ( const DMatrix3 xm,
const DMatrix3 m 
)
friend

This method is used to build a matrix that constructs a transformation in a particular space.

For example, say you have a rotation you want to apply, but you want to perform the rotation in another coordinate system. To do this, you typically transform into the space of the coordinate system, then apply the transformation, and then transform out of that coordinate system. This method constructs a matrix that does just this. It transforms matrix m so it is applied in the space of matrix xm. It returns a DMatrix3 that is xm*m*Inverse(xm).

Parameters
xmSpecifies the coordinate system you want to work in.
mSpecifies the transformation matrix.
Returns
Returns a DMatrix3 that is xm*m*Inverse(xm).

◆ VectorTransform [2/2]

DPoint3 VectorTransform ( const DPoint3 v,
const DMatrix3 m 
)
friend

◆ MatrixMultiply

void MatrixMultiply ( DMatrix3 outMatrix,
const DMatrix3 matrixA,
const DMatrix3 matrixB 
)
friend

Same as Maxtrix3::operator[].

Perform matrix multiplication without additional matrix copy

Parameters
outMatrixThe result of matrixA * matrixB
matrixAFirst matrix to multiply
matrixBSecond matrix to multiply

◆ Inverse [2/2]

void Inverse ( DMatrix3 outMatrix,
const DMatrix3 m 
)
friend

Same as Maxtrix3::Inverse.

Compute the inverse of the matrix without additional matrix copy

Parameters
outMatrixThe inversed matrix.
mThe matrix to compute the inverse of.

Member Data Documentation

◆ Identity

const DMatrix3 Identity
static

An global instance of DMatrix3 set to the identity.

An identity matrix has no rotation, scale or translation on it. In other words, it is a matrix that has no effect when multiplied with another matrix.
the structure of the Matrix is as follows:

[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
[0, 0, 0]