The 2D Chamfer is used to create a beveled edge on the part. Select from Edges or Sketches. A tapered tool is required.
Select the sharp edge on a part without modeled chamfers. If the Chamfer is modeled, select the lower edge of the chamfer.
Sharp Edge Selection. |
Modeled Edge Selection. |
Manufacture > Milling > 2D > 2D Chamfer
Interested in a structured lesson on 2D Chamfer?
Select the type of coolant used with the machine tool. Not all types will work with all machine postprocessors.
Spindle and Feedrate cutting parameters.
You can select Edges or Sketches. Contiguous geometry is automatically chained.
Select the sharp edge on a part without modeled chamfers. If the Chamfer is modeled, select the lower edge of the chamfer.
Used on open contours to extend the beginning and end of the selected chain or multiple chains. This creates a tangent linear extension based on the angle of the start and end points. This is an extension of the selected geometry.
If the extension distance causes an overlap of a single chain, the intersection will be trimmed into a closed boundary. |
Enable this option to enter a different end extension length value.
Specifies the distance to extend the end position.
16mm Start Extension & 5mm End Extension
Specifies how the tool orientation is determined using a combination of triad orientation and origin options.
The Orientation drop-down menu provides the following options to set the orientation of the X, Y, and Z triad axes:
The Origin drop-down menu offers the following options for locating the triad origin:
Enable to override the model geometry (surfaces/bodies) defined in the setup.
Enabled by default, the model selected in the setup is included in addition to the model surfaces selected in the operation. If you disable this checkbox, then the toolpath is generated only on the surfaces selected in the operation.
The Clearance height is the first height the tool rapids to on its way to the start of the tool path.
Clearance Height
The Offset is applied and is relative to the Clearance height selection in the above drop-down list.
Retract height sets the height that the tool moves up to before the next cutting pass. Retract height should be set above the Feed height and Top. Retract height is used together with the subsequent offset to establish the height.
Retract Height
The Offset is applied and is relative to the Retract height selection in the above drop-down list.
Feed height sets the height that the tool rapids to before changing to the feed/plunge rate to enter the part. Feed height should be set above the Top. A drilling operation uses this height as the initial feed height and the retract peck height. Feed height is used together with the subsequent offset to establish the height.
Feed Height
The Offset is applied and is relative to the Feed height selection in the above drop-down list.
Top height sets the height that describes the top of the cut. Top height should be set above the Bottom. Top height is used together with the subsequent offset to establish the height.
Top Height
The Offset is applied and is relative to the Top height selection in the above drop-down list.
Bottom height determines the final machining height/depth and the lowest depth that the tool descends into the stock. Bottom height needs to be set below the Top. Bottom height is used together with the subsequent offset to establish the height.
Bottom Height
The Offset is applied and is relative to the Bottom height selection in the above drop-down list.
The tolerance used when linearizing geometry such as splines and ellipses. The tolerance is taken as the maximum chord distance.
Loose Tolerance .100 | Tight Tolerance .001 |
CNC machine contouring motion is controlled using line G1 and arc G2 G3 commands. To accommodate this, Fusion approximates spline and surface toolpaths by linearizing them; creating many short line segments to approximate the desired shape. How accurately the toolpath matches the desired shape depends largely on the number of lines used. More lines result in a toolpath that more closely approximates the nominal shape of the spline or surface.
Data Starving
It is tempting to always use very tight tolerances, but there are trade-offs including longer toolpath calculation times, large G-code files, and very short line moves. The first two are not much of a problem because Fusion calculates very quickly and most modern controls have at least 1MB of RAM. However, short line moves, coupled with high feedrates, may result in a phenomenon known as data starving.
Data starving occurs when the control becomes so overwhelmed with data that it cannot keep up. CNC controls can only process a finite number of lines of code (blocks) per second. That can be as few as 40 blocks/second on older machines and 1,000 blocks/second or more on a newer machine like the Haas Automation control. Short line moves and high feedrates can force the processing rate beyond what the control can handle. When that happens, the machine must pause after each move and wait for the next servo command from the control.
Specifies the compensation type.
The finishing overlap is the distance that the tool passes beyond the entry point before leading out. Specifying a finishing overlap ensures that the material at the entry point is properly cleared.
No finishing overlap |
0.25" finishing overlap |
The amount to adjust the chamfer size.
Chamfer width added to sharp edge |
|
The amount to extend the tool tip past the edge of the chamfer.
This value specifies how far the tool needs to stay away from model geometry that is not being chamfered.
Smooths the toolpath by removing excessive points and fitting arcs where possible within the given filtering tolerance.
Smoothing Off | Smoothing On |
Smoothing is used to reduce code size without sacrificing accuracy. Smoothing works by replacing collinear lines with one line and tangent arcs to replace multiple lines in curved areas.
The effects of smoothing can be dramatic. G-code file size may be reduced by as much as 50% or more. The machine will run faster and more smoothly and surface finish improves. The amount of code reduction depends on how well the toolpath lends itself to smoothing. Toolpaths that lay primarily in a major plane (XY, XZ, YZ), like parallel paths, filter well. Those that do not, such as 3D Scallop, are reduced less.
Specifies the smoothing filter tolerance.
Smoothing works best when the Tolerance (the accuracy with which the original linearized path is generated) is equal to or greater than the Smoothing (line arc fitting) tolerance.
Specifies that the feed should be reduced at corners.
Specifies the maximum angular change allowed before the feedrate is reduced.
Specifies the minimum radius allowed before the feed is reduced.
Specifies the distance to reduce the feed before a corner.
Specifies the reduced feedrate to be used at corners.
Enable to only reduce the feedrate on inner corners.
Specifies when rapid movements should be output as true rapids (G0) and when they should be output as high feedrate movements (G1).
This parameter is usually set to avoid collisions at rapids on machines which perform "dog-leg" movements at rapid.
The feedrate to use for rapid movements output as G1 instead of G0.
When enabled, retracts are done as rapid movements (G0). Disable to force retracts at lead-out feedrate.
Minimum distance between the tool and the part surfaces during retract moves. The distance is measured after stock to leave has been applied, so if a negative stock to leave is used, special care should be taken to ensure that safe distance is large enough to prevent any collisions.
Enable to generate a lead-in.
Lead-in
Specifies the radius for horizontal lead-in moves.
Horizontal lead-in radius
Specifies the sweep of the lead-in arc.
Sweep angle @ 90 degrees |
Sweep angle @ 45 degrees |
Specifies the length of the linear lead-in move for which to activate radius compensation in the controller.
Linear lead-in distance
Replaces tangential extensions of lead-in/lead-out arcs with a move perpendicular to the arc.
Shown with Perpendicular entry/exit
Example: A bore with lead arcs that are as large as possible (the larger the arc the less chance of dwell mark), and where a tangent linear lead is not possible because it would extend into the side of the bore.
The radius of the vertical arc smoothing the entry move as it goes from the entry move to the toolpath itself.
Vertical lead-in radius
Enable to generate a lead-out.
Lead-out
Specifies that the lead-out definition should be identical to the lead-in definition.
Specifies the radius for horizontal lead-out moves.
Horizontal lead-out radius
Specifies the sweep of the lead-out arc.
Specifies the length of the linear lead-out move for which to deactivate radius compensation in the controller.
Linear lead-out distance
Replaces tangential extensions of lead-in/lead-out arcs with a move perpendicular to the arc.
Shown with Perpendicular entry/exit
Example: A bore with lead arcs that are as large as possible (the larger the arc the less chance of dwell mark),and where a tangent linear lead is not possible because it would extend into the side of the bore.
Specifies the radius of the vertical lead-out.
Vertical lead-out radius
Select geometry near the location where you want the tool to enter.