offsetNode/offsetNode.cpp

offsetNode/offsetNode.cpp
//-
// ==========================================================================
// Copyright 2015 Autodesk, Inc. All rights reserved.
//
// Use of this software is subject to the terms of the Autodesk
// license agreement provided at the time of installation or download,
// or which otherwise accompanies this software in either electronic
// or hard copy form.
// ==========================================================================
//+
//
// DESCRIPTION:
//
// Produces the dependency graph node "offsetNode".
//
// This plug-in demonstrates how to create a user-defined weighted deformer
// with an associated shape. A deformer is a node which takes any number of
// input geometries, deforms them, and places the output into the output
// geometry attribute. This example plug-in defines a new deformer node
// that offsets vertices according to their CV's weights. The weights are set
// using the set editor or the percent command.
//
// To use this node:
// - create a plane or some other object
// - type: "deformer -type offset"
// - a locator is created by the command, and you can use this locator
// to control the direction of the offset. The object's CV's will be offset
// by the value of the weights of the CV's (the default will be the weight * some constant)
// in the direction of the y-vector of the locator
// - you can edit the weights using either the component editor or by using
// the percent command (eg. percent -v .5 offset1;)
//
// Use this script to create a simple example with the offset node:
//
// loadPlugin offsetNode;
// polyTorus -r 1 -sr 0.5 -tw 0 -sx 50 -sy 50 -ax 0 1 0 -cuv 1 -ch 1;
// deformer -type "offset";
// setKeyframe -v 0 -at rotateZ -t 1 transform1;
// setKeyframe -v 180 -at rotateZ -t 60 transform1;
// select -cl;
//
#include <string.h>
#include <maya/MIOStream.h>
#include <maya/MStringArray.h>
#include <math.h>
#include <maya/MPxDeformerNode.h>
#include <maya/MItGeometry.h>
#include <maya/MPxLocatorNode.h>
#include <maya/MFnNumericAttribute.h>
#include <maya/MFnMatrixAttribute.h>
#include <maya/MFnMatrixData.h>
#include <maya/MFnPlugin.h>
#include <maya/MFnDependencyNode.h>
#include <maya/MTypeId.h>
#include <maya/MPlug.h>
#include <maya/MDataBlock.h>
#include <maya/MDataHandle.h>
#include <maya/MArrayDataHandle.h>
#include <maya/MPoint.h>
#include <maya/MVector.h>
#include <maya/MMatrix.h>
#include <maya/MDagModifier.h>
#include <maya/MPxGPUDeformer.h>
#include <maya/MGPUDeformerRegistry.h>
#include <maya/MOpenCLInfo.h>
#include <maya/MViewport2Renderer.h>
#include <maya/MFnMesh.h>
#include <clew/clew_cl.h>
#include <vector>
class offset : public MPxDeformerNode
{
public:
offset();
virtual ~offset();
static void* creator();
static MStatus initialize();
// deformation function
//
virtual MStatus deform(MDataBlock& block,
MItGeometry& iter,
const MMatrix& mat,
unsigned int multiIndex);
// when the accessory is deleted, this node will clean itself up
//
virtual MObject& accessoryAttribute() const;
// create accessory nodes when the node is created
//
public:
// local node attributes
static MObject offsetMatrix; // offset center and axis
static MTypeId id;
private:
};
MTypeId offset::id( 0x8000c );
// local attributes
//
MObject offset::offsetMatrix;
offset::offset() {}
offset::~offset() {}
void* offset::creator()
{
return new offset();
}
MStatus offset::initialize()
{
// local attribute initialization
offsetMatrix=mAttr.create( "locateMatrix", "lm");
mAttr.setStorable(false);
mAttr.setConnectable(true);
// deformation attributes
addAttribute( offsetMatrix);
attributeAffects( offset::offsetMatrix, offset::outputGeom );
}
offset::deform( MDataBlock& block,
MItGeometry& iter,
const MMatrix& /*m*/,
unsigned int multiIndex)
//
// Method: deform
//
// Description: Deform the point with a squash algorithm
//
// Arguments:
// block : the datablock of the node
// iter : an iterator for the geometry to be deformed
// m : matrix to transform the point into world space
// multiIndex : the index of the geometry that we are deforming
//
//
{
MStatus returnStatus;
// Envelope data from the base class.
// The envelope is simply a scale factor.
//
MDataHandle envData = block.inputValue(envelope, &returnStatus);
if (MS::kSuccess != returnStatus) return returnStatus;
float env = envData.asFloat();
// Get the matrix which is used to define the direction and scale
// of the offset.
//
MDataHandle matData = block.inputValue(offsetMatrix, &returnStatus );
if (MS::kSuccess != returnStatus) return returnStatus;
MMatrix omat = matData.asMatrix();
MMatrix omatinv = omat.inverse();
// iterate through each point in the geometry
//
for ( ; !iter.isDone(); iter.next()) {
MPoint pt = iter.position();
pt *= omatinv;
float weight = weightValue(block,multiIndex,iter.index());
// offset algorithm
//
pt.y = pt.y + env*weight;
//
// end of offset algorithm
pt *= omat;
iter.setPosition(pt);
}
return returnStatus;
}
/* override */
offset::accessoryAttribute() const
//
// Description:
// This method returns a the attribute to which an accessory
// shape is connected. If the accessory shape is deleted, the deformer
// node will automatically be deleted.
//
// This method is optional.
//
{
return offset::offsetMatrix;
}
/* override */
offset::accessoryNodeSetup(MDagModifier& cmd)
//
// Description:
// This method is called when the deformer is created by the
// "deformer" command. You can add to the cmds in the MDagModifier
// cmd in order to hook up any additional nodes that your node needs
// to operate.
//
// In this example, we create a locator and attach its matrix attribute
// to the matrix input on the offset node. The locator is used to
// set the direction and scale of the random field.
//
// Description:
// This method is optional.
//
{
MStatus result;
// hook up the accessory node
//
MObject objLoc = cmd.createNode(MString("locator"),
&result);
if (MS::kSuccess == result) {
MFnDependencyNode fnLoc(objLoc);
MString attrName;
attrName.set("matrix");
MObject attrMat = fnLoc.attribute(attrName);
result = cmd.connect(objLoc,attrMat,this->thisMObject(),offset::offsetMatrix);
}
return result;
}
// the GPU override implementation of the offsetNode
//
class offsetGPUDeformer : public MPxGPUDeformer
{
public:
// Virtual methods from MPxGPUDeformer
offsetGPUDeformer();
virtual ~offsetGPUDeformer();
virtual MPxGPUDeformer::DeformerStatus evaluate(MDataBlock& block, const MEvaluationNode&, const MPlug& plug, unsigned int numElements, const MAutoCLMem, const MAutoCLEvent, MAutoCLMem, MAutoCLEvent&);
virtual void terminate();
static MGPUDeformerRegistrationInfo* getGPUDeformerInfo();
static bool validateNodeInGraph(MDataBlock& block, const MEvaluationNode&, const MPlug& plug, MStringArray* messages);
static bool validateNodeValues(MDataBlock& block, const MEvaluationNode&, const MPlug& plug, MStringArray* messages);
private:
// helper methods
void extractWeightArray(MDataBlock& block, const MEvaluationNode& evaluationNode, const MPlug& plug);
void extractOffsetMatrix(MDataBlock& block, const MEvaluationNode& evaluationNode, const MPlug& plug);
// Storage for data on the GPU
MAutoCLMem fCLWeights;
MAutoCLMem fOffsetMatrix;
unsigned int fNumElements;
// Kernel
MAutoCLKernel fKernel;
};
class offsetNodeGPUDeformerInfo : public MGPUDeformerRegistrationInfo
{
public:
offsetNodeGPUDeformerInfo(){}
virtual ~offsetNodeGPUDeformerInfo(){}
{
return new offsetGPUDeformer();
}
virtual bool validateNodeInGraph(MDataBlock& block, const MEvaluationNode& evaluationNode, const MPlug& plug, MStringArray* messages)
{
return offsetGPUDeformer::validateNodeInGraph(block, evaluationNode, plug, messages);
}
virtual bool validateNodeValues(MDataBlock& block, const MEvaluationNode& evaluationNode, const MPlug& plug, MStringArray* messages)
{
return offsetGPUDeformer::validateNodeValues(block, evaluationNode, plug, messages);
}
};
MGPUDeformerRegistrationInfo* offsetGPUDeformer::getGPUDeformerInfo()
{
static offsetNodeGPUDeformerInfo theOne;
return &theOne;
}
offsetGPUDeformer::offsetGPUDeformer()
{
// Remember the ctor must be fast. No heavy work should be done here.
// Maya may allocate one of these and then never use it.
}
offsetGPUDeformer::~offsetGPUDeformer()
{
terminate();
}
/* static */
bool offsetGPUDeformer::validateNodeInGraph(MDataBlock& block, const MEvaluationNode& evaluationNode, const MPlug& plug, MStringArray* messages)
{
// offsetGPUDeformer supports everything on the offset node except envelope
// envelope is handled in validateNodeValues because we support some values
// but not others.
return true;
}
/* static */
bool offsetGPUDeformer::validateNodeValues(MDataBlock& block, const MEvaluationNode& evaluationNode, const MPlug& plug, MStringArray* messages)
{
// As an example offsetGPUDeformer has conditional support for the envelop
// attribute. offsetGPUDeformer supports the underlying depend node if
// envelope is exactly 1.0f. Otherwise, the underlying node is not supported.
// Note that in additional to testing the value of the envelope attribute here
// we have also registered the envelope attribute as a conditional attribute in
// offsetNodeGPUDeformerInfo.
MObject node = plug.node();
MFnDependencyNode fnNode(node);
// Now that I know the envelope value is not changing, check to see if it is 1.0f
MPlug envelopePlug(node, MPxDeformerNode::envelope);
MDataHandle envData;
envelopePlug.getValue(envData);
if (envData.asFloat() != 1.0f)
{
MOpenCLInfo::appendMessage(messages, "Offset %s not supported by deformer evaluator because envelope is not exactly 1.0.", fnNode.name().asChar());
return false;
}
return true;
}
MPxGPUDeformer::DeformerStatus offsetGPUDeformer::evaluate(
MDataBlock& block, // data block for "this" node
const MEvaluationNode& evaluationNode, // evaluation node representing "this" node
const MPlug& plug, // the multi index we're working on. There will be a separate instance created per multi index
unsigned int numElements, // the number of float3 elements in inputBuffer and outputBuffer
const MAutoCLMem inputBuffer, // the input positions we are going to deform
const MAutoCLEvent inputEvent, // the input event we need to wait for before we start reading the input positions
MAutoCLMem outputBuffer, // the output positions we should write to. This may or may not be the same buffer as inputBuffer.
MAutoCLEvent& outputEvent) // the event a downstream deformer will wait for before reading from output buffer
{
// evaluate has two main pieces of work. I need to transfer any data I care about onto the GPU, and I need to run my OpenCL Kernel.
// First, transfer the data. offset has two pieces of data I need to transfer to the GPU, the weight array and the offset matrix.
// I don't need to transfer down the input position buffer, that is already handled by the deformer evaluator, the points are in inputBuffer.
fNumElements = numElements;
MObject node = plug.node();
extractWeightArray(block, evaluationNode, plug);
extractOffsetMatrix(block, evaluationNode, plug);
// Now that all the data we care about is on the GPU, setup and run the OpenCL Kernel
if (!fKernel.get())
{
char *maya_location = getenv( "MAYA_LOCATION" );
MString openCLKernelFile(maya_location);
openCLKernelFile +="/../Extra/devkitBase/devkit/plug-ins/offsetNode/offset.cl";
MString openCLKernelName("offset");
fKernel = MOpenCLInfo::getOpenCLKernel(openCLKernelFile, openCLKernelName);
if (!fKernel) return MPxGPUDeformer::kDeformerFailure;
}
cl_int err = CL_SUCCESS;
// Set all of our kernel parameters. Input buffer and output buffer may be changing every frame
// so always set them.
unsigned int parameterId = 0;
err = clSetKernelArg(fKernel.get(), parameterId++, sizeof(cl_mem), (void*)outputBuffer.getReadOnlyRef());
MOpenCLInfo::checkCLErrorStatus(err);
err = clSetKernelArg(fKernel.get(), parameterId++, sizeof(cl_mem), (void*)inputBuffer.getReadOnlyRef());
MOpenCLInfo::checkCLErrorStatus(err);
err = clSetKernelArg(fKernel.get(), parameterId++, sizeof(cl_mem), (void*)fCLWeights.getReadOnlyRef());
MOpenCLInfo::checkCLErrorStatus(err);
err = clSetKernelArg(fKernel.get(), parameterId++, sizeof(cl_mem), (void*)fOffsetMatrix.getReadOnlyRef());
MOpenCLInfo::checkCLErrorStatus(err);
err = clSetKernelArg(fKernel.get(), parameterId++, sizeof(cl_uint), (void*)&fNumElements);
MOpenCLInfo::checkCLErrorStatus(err);
// Figure out a good work group size for our kernel.
size_t workGroupSize;
size_t retSize;
err = clGetKernelWorkGroupInfo(
fKernel.get(),
MOpenCLInfo::getOpenCLDeviceId(),
CL_KERNEL_WORK_GROUP_SIZE,
sizeof(size_t),
&workGroupSize,
&retSize);
MOpenCLInfo::checkCLErrorStatus(err);
size_t localWorkSize = 256;
if (retSize > 0) localWorkSize = workGroupSize;
size_t globalWorkSize = (localWorkSize - fNumElements % localWorkSize) + fNumElements; // global work size must be a multiple of localWorkSize
// set up our input events. The input event could be NULL, in that case we need to pass
// slightly different parameters into clEnqueueNDRangeKernel
unsigned int numInputEvents = 0;
if (inputEvent.get())
{
numInputEvents = 1;
}
// run the kernel
err = clEnqueueNDRangeKernel(
fKernel.get(),
1,
NULL,
&globalWorkSize,
&localWorkSize,
numInputEvents,
numInputEvents ? inputEvent.getReadOnlyRef() : 0,
outputEvent.getReferenceForAssignment() );
return MPxGPUDeformer::kDeformerSuccess;
}
void offsetGPUDeformer::terminate()
{
MHWRender::MRenderer::theRenderer()->releaseGPUMemory(fNumElements*sizeof(float));
fCLWeights.reset();
fOffsetMatrix.reset();
fKernel.reset();
}
void offsetGPUDeformer::extractWeightArray(MDataBlock& block, const MEvaluationNode& evaluationNode, const MPlug& plug)
{
// if we've already got a weight array and it is not changing then don't bother copying it
// to the GPU again
MStatus status;
// Note that right now dirtyPlugExists takes an attribute, so if any element in the multi is changing we think it is dirty...
// To avoid false dirty issues here you'd need to only use one element of the MPxDeformerNode::input multi attribute for each
// offset node.
if ((fCLWeights.get() && !evaluationNode.dirtyPlugExists(MPxDeformerNode::weightList, &status)) || !status)
{
return;
}
// Maya might do some tricky stuff like not store the weight array at all for certain weight
// values so we can't count on an array existing in the weightList. For the OpenCL Kernel
// we want an array with one weight in it per vertex, we need to build it carefully here.
std::vector<float> temp;
temp.reserve(fNumElements);
// Two possibilities: we could have a sparse array in weightList[multiIndex] or there could be nothing in weightList[multiIndex].
// if nothing is there then all the weights at 1.0f.
// Get a handle to the weight array we want.
if (!status) return; // we should always be able to get a weightList
status = weightList.jumpToElement(plug.logicalIndex());
// it is possible that the jumpToElement fails. In that case all weights are 1.
if (!status)
{
for(unsigned int i=0; i<fNumElements; i++)
temp.push_back(1.0f);
}
else
{
MDataHandle weightsStructure = weightList.inputValue(&status);
if (!status) return;
MArrayDataHandle weights = weightsStructure.child(MPxDeformerNode::weights);
if (!status) return;
// number of non-zero weights
unsigned int numWeights = weights.elementCount(&status);
if (!status) return;
// we're building a list with a weight per vertex, even if the weight is zero
unsigned int weightIndex = 0;
for(unsigned int i=0; i<numWeights; i++, weights.next())
{
unsigned int weightsElementIndex = weights.elementIndex(&status);
while (weightIndex < weightsElementIndex)
{
temp.push_back(0.0f); // weights could be sparse, fill in zero weight if no data
weightIndex++;
}
MDataHandle value = weights.inputValue(&status);
temp.push_back(value.asFloat());
weightIndex++;
}
// now we have written the last non-zero weight into temp, but the last non-zero weight
// doesn't have to be for the last vertex in the buffer. Add more zero values if necessary.
while (weightIndex < fNumElements)
{
temp.push_back(0.0f); // weights could be sparse, fill in zero weight if no data
weightIndex++;
}
}
// Two possibilities, we could be updating an existing OpenCL buffer or allocating a new one.
cl_int err = CL_SUCCESS;
if (!fCLWeights.get())
{
MHWRender::MRenderer::theRenderer()->holdGPUMemory(fNumElements*sizeof(float));
fCLWeights.attach(clCreateBuffer(MOpenCLInfo::getOpenCLContext(), CL_MEM_COPY_HOST_PTR | CL_MEM_READ_ONLY, fNumElements * sizeof(float), (void*)&temp[0], &err));
}
else
{
// I use a blocking write here, non-blocking could be faster... need to manage the lifetime of temp, and have the kernel wait until the write finishes before running
// I'm also assuming that the weight buffer is not growing.
err = clEnqueueWriteBuffer(MOpenCLInfo::getMayaDefaultOpenCLCommandQueue(), fCLWeights.get(), CL_TRUE, 0, fNumElements * sizeof(float), (void*)&temp[0], 0, NULL, NULL);
}
}
void offsetGPUDeformer::extractOffsetMatrix(MDataBlock& block, const MEvaluationNode& evaluationNode, const MPlug& plug)
{
// I pass the offset matrix to OpenCL using a buffer as well. I also send down the inverse matrix to avoid calculating it many times on the GPU
MStatus status;
if ((fOffsetMatrix.get() && !evaluationNode.dirtyPlugExists(offset::offsetMatrix, &status)) || !status)
{
return;
}
MDataHandle matData = block.inputValue(offset::offsetMatrix, &status );
if (MS::kSuccess != status) return;
MMatrix omat = matData.asMatrix();
MMatrix omatinv = omat.inverse();
// Convert the matrix from Maya format to the format the OpenCL kernel expects
omat = omat.transpose();
omatinv = omatinv.transpose();
// MMatrix stores double values, but I want floating point values on the GPU so convert them here.
unsigned int numFloat = 32;
float* temp = new float[numFloat];
unsigned int curr = 0;
for(unsigned int row = 0; row<4; row++)
{
for(unsigned int column = 0; column<4; column++)
{
temp[curr++] = (float)omat(row, column);
}
}
for(unsigned int row = 0; row<4; row++)
{
for(unsigned int column = 0; column<4; column++)
{
temp[curr++] = (float)omatinv(row, column);
}
}
// Two possibilities, we could be updating an existing OpenCL buffer or allocating a new one.
cl_int err = CL_SUCCESS;
if (!fOffsetMatrix.get())
{
fOffsetMatrix.attach(clCreateBuffer(MOpenCLInfo::getOpenCLContext(), CL_MEM_COPY_HOST_PTR | CL_MEM_READ_ONLY, numFloat * sizeof(float), (void*) temp, &err));
}
else
{
// I use a blocking write here, non-blocking could be faster... need to manage the lifetime of temp, and have the kernel wait until the write finishes before running
err = clEnqueueWriteBuffer(MOpenCLInfo::getMayaDefaultOpenCLCommandQueue(), fOffsetMatrix.get(), CL_TRUE, 0, numFloat * sizeof(float), (void*)temp, 0, NULL, NULL);
}
delete [] temp;
}
// standard initialization procedures
//
MStatus initializePlugin( MObject obj )
{
MStatus result;
MFnPlugin plugin( obj, PLUGIN_COMPANY, "3.0", "Any");
result = plugin.registerNode( "offset", offset::id, offset::creator,
offset::initialize, MPxNode::kDeformerNode );
MString nodeClassName("offset");
MString registrantId("mayaPluginExample");
nodeClassName,
registrantId,
offsetGPUDeformer::getGPUDeformerInfo());
nodeClassName,
registrantId,
return result;
}
MStatus uninitializePlugin( MObject obj)
{
MStatus result;
MFnPlugin plugin( obj );
result = plugin.deregisterNode( offset::id );
MString nodeClassName("offset");
MString registrantId("mayaPluginExample");
nodeClassName,
registrantId);
return result;
}