template<class T>
class Tab< T >
Generic container class.
This is a type-safe variable length array class which also supports list-like operations of insertion, appending and deleting. Two instance variables are maintained: nalloc is the number items allocated in the array; count is the number actual used (count<=nalloc). Allocation is performed automatically when Insert or Append operations are performed. It can also be done manually by calling Resize() or Shrink().
- Note
- Delete does not resize the storage: to do this call Shrink(). If you are going to do a sequence of Appends, its more efficient to first call Resize() to make room for them. Beware of using the Addr() function: it returns a pointer which may be invalid after subsequent Insert(), Append(), Delete(), Resize(), or Shrink() operations.
-
In 3ds max 1.x, the method SetCount(n) will set the count to n, but will not assure that only n items are allocated. To do that you should call Resize(n). This sets the number allocated. It will also make sure that count<=numAlloc. To make sure that exactly n are allocated and that count = n, call both Resize(n) and SetCount(n). In 3ds max 2.x and later using SetCount() will also effectively call Resize().
-
This structure is not meant to support more than 2G items; if you need to have more items, consider using an STL container which does not have the 2G barrier and is most likely more optimized than this version.
The implementation minimizes the storage of empty Tables: they are represented by a single NULL pointer. Also, the major part of the code is generic, shared by different Tabs for different types of items.
Tabs may be used on the stack, i.e. they may be declared as a local variable of a function or method. You can set the number of items in the table, work with them, and then when the function returns, the destructor of the Tab is called, and the memory will be deallocated.
Tabs are only appropriate for use with classes that don't allocate memory. For example, Tab<float> is fine while Tab<MSTR> is problematic (MSTR is the class used for strings in 3ds max). In this case, the MSTR class itself allocates memory for the string. It relies on its constructor or destructor to allocate and free the memory. The problem is the Tab class will not call the constructors and destructors for all the items in the table, nor will it call the copy operator. As an example of this, when you assign a string to another string, the MSTR class does not just copy the pointer to the string buffer (which would result in two items pointing to the same block of memory). Rather it will allocate new memory and copy the contents of the source buffer. In this way you have two individual pointers pointing at two individual buffers. When each of the MSTR destructors is called it will free each piece of memory. So, the problem with using a Tab<MSTR> is that when you assign a Tab to another Tab, the Tab copy constructor will copy all the items in the table, but it will not call the copy operator on the individual items. Thus, if you had a Tab<MSTR> and you assigned it to another Tab<MSTR>, you'd have two MSTRs pointing to the same memory. Then when the second one gets deleted it will be trying to double free that memory.
So again, you should only put things in a Tab that don't allocate and deallocate memory in their destructors. Thus, this class should not be used with classes that implement an assignment operator and or destructor because neither are guaranteed to be called. The way around this is to use a table of pointers to the items. For example, instead of Tab<MSTR> use Tab <MSTR *>. As another example, Tab<int> is OK, while Tab<BitArray> would be no good. In the BitArray case one should use class pointers, i.e. Tab<BitArray *>.
All methods of this class are implemented by the system except the compare function used in sorting (see Sort()).
- See also
- class BitArray, class MaxSDK::Array
|
static UtilExport void * | operator new (size_t size) |
| Standard new operator used to allocate objects If there is insufficient memory, an exception will be thrown. More...
|
|
static UtilExport void * | operator new (size_t size, const std::nothrow_t &e) |
| Standard new operator used to allocate objects if there is insufficient memory, NULL will be returned. More...
|
|
static UtilExport void * | operator new (size_t size, const char *filename, int line) |
| New operator used to allocate objects that takes the filename and line number where the new was called If there is insufficient memory, an exception will be thrown. More...
|
|
static UtilExport void * | operator new (size_t size, int block_type, const char *filename, int line) |
| New operator used to allocate objects that takes the type of memory, filename and line number where the new was called If there is insufficient memory, an exception will be thrown. More...
|
|
static UtilExport void * | operator new (size_t size, const std::nothrow_t &e, const char *filename, int line) |
| New operator used to allocate objects that takes the filename and line number where the new was called If there is insufficient memory, NULL will be returned. More...
|
|
static UtilExport void * | operator new (size_t size, unsigned long flags) |
| New operator used to allocate objects that takes extra flags to specify special operations If there is insufficient memory, an exception will be thrown. More...
|
|
static UtilExport void * | operator new (size_t size, const std::nothrow_t &e, unsigned long flags) |
| New operator used to allocate objects that takes extra flags to specify special operations If there is insufficient memory, NULL will be returned. More...
|
|
static UtilExport void * | operator new[] (size_t size) |
| New operator used to allocate arrays of objects If there is insufficient memory, an exception will be thrown. More...
|
|
static UtilExport void * | operator new[] (size_t size, const std::nothrow_t &e) |
| New operator used to allocate arrays of objects If there is insufficient memory, NULL will be returned. More...
|
|
static UtilExport void * | operator new[] (size_t size, const char *filename, int line) |
| New operator used to allocate arrays of objects If there is insufficient memory, an exception will be thrown. More...
|
|
static UtilExport void * | operator new[] (size_t size, int block_type, const char *filename, int line) |
| New operator used to allocate arrays of objects. More...
|
|
static UtilExport void * | operator new[] (size_t size, const std::nothrow_t &e, const char *filename, int line) |
| New operator used to allocate arrays of objects If there is insufficient memory, NULL will be returned. More...
|
|
static UtilExport void * | operator new[] (size_t size, unsigned long flags) |
| New operator used to allocate arrays of objects If there is insufficient memory, an exception will be thrown. More...
|
|
static UtilExport void * | operator new[] (size_t size, const std::nothrow_t &e, unsigned long flags) |
| New operator used to allocate arrays of objects If there is insufficient memory, NULL will be returned. More...
|
|
static UtilExport void | operator delete (void *ptr) |
| Standard delete operator used to deallocate an object If the pointer is invalid, an exception will be thrown. More...
|
|
static UtilExport void | operator delete (void *ptr, const std::nothrow_t &e) |
| Standard delete operator used to deallocate an object If the pointer is invalid, nothing will happen. More...
|
|
static UtilExport void | operator delete (void *ptr, const char *filename, int line) |
| Delete operator used to deallocate an object that takes the filename and line number where the delete was called If the pointer is invalid, an exception will be thrown. More...
|
|
static UtilExport void | operator delete (void *ptr, int block_type, const char *filename, int line) |
| Delete operator used to deallocate an object that takes the type of memory, filename and line number where the delete was called If the pointer is invalid, an exception will be thrown. More...
|
|
static UtilExport void | operator delete (void *ptr, const std::nothrow_t &e, const char *filename, int line) |
| Delete operator used to deallocate an object that takes the filename and line number where the delete was called If the pointer is invalid, nothing will happen. More...
|
|
static UtilExport void | operator delete (void *ptr, unsigned long flags) |
| Delete operator used to deallocate an object that takes extra flags to specify special operations If the pointer is invalid, an exception will be thrown. More...
|
|
static UtilExport void | operator delete (void *ptr, const std::nothrow_t &e, unsigned long flags) |
| Delete operator used to deallocate an object that takes extra flags to specify special operations If the pointer is invalid, nothing will happen. More...
|
|
static UtilExport void | operator delete[] (void *ptr) |
| Standard delete operator used to deallocate an array of objects If the pointer is invalid, an exception will be thrown. More...
|
|
static UtilExport void | operator delete[] (void *ptr, const std::nothrow_t &e) |
| Standard delete operator used to deallocate an array of objects If the pointer is invalid, nothing will happen. More...
|
|
static UtilExport void | operator delete[] (void *ptr, const char *filename, int line) |
| Delete operator used to deallocate an array of objects that takes the filename and line number where the delete was called If the pointer is invalid, an exception will be thrown. More...
|
|
static UtilExport void | operator delete[] (void *ptr, int block_type, const char *filename, int line) |
| Delete operator used to deallocate an array of objects that takes the type of memory, filename and line number where the delete was called If the pointer is invalid, an exception will be thrown. More...
|
|
static UtilExport void | operator delete[] (void *ptr, const std::nothrow_t &e, const char *filename, int line) |
| Delete operator used to deallocate an array of objects that takes the filename and line number where the delete was called If the pointer is invalid, nothing will happen. More...
|
|
static UtilExport void | operator delete[] (void *ptr, unsigned long flags) |
| Delete operator used to deallocate an array of objects that takes extra flags to specify special operations If the pointer is invalid, an exception will be thrown. More...
|
|
static UtilExport void | operator delete[] (void *ptr, const std::nothrow_t &e, unsigned long flags) |
| Delete operator used to deallocate an array of objects that takes extra flags to specify special operations If the pointer is invalid, an exception will be thrown. More...
|
|
static UtilExport void * | operator new (size_t size, void *placement_ptr) |
| Placement new operator. More...
|
|
static UtilExport void | operator delete (void *ptr, void *placement_ptr) |
| Placement delete operator. More...
|
|
static UtilExport void * | aligned_malloc (size_t size, size_t alignment) |
| Allocates memory on a specified alignment boundary. More...
|
|
static UtilExport void * | aligned_realloc (void *ptr, size_t size, size_t alignment) |
| Reallocates memory on a specified alignment boundary. More...
|
|
static UtilExport void | aligned_free (void *ptr) |
| Frees a block of memory that was allocated with aligned_malloc/aligned_realloc. More...
|
|