Equation Curve Formula Reference

Units, Parameters, and Functions in Equation Curves

Equation curves support parameters and functions. The exception for parameters is that you cannot have a parameter named “t,” because that is used for the variable in equations. Unsupported functions are:
  • Floor
  • Ceiling
  • Abs
  • Sign
  • % Modulo

2D Equation Formulas

  Cartesian Polar Explicit Cartesian Explicit Polar
Addition/Subtraction

x(t): 1 mm * t + 1

y(t): 1 mm * t - 1

r(t): 1 mm * t + 1

θ(t): 1 rad * t - 1 rad

y(x): x + 1 r(a): 1 mm * a / 1 rad + 1
Multiplication/Division

x(t): 2 mm * t

y(t): 2 mm / t

r(t): 2 mm * t

θ(t): 2 rad / t

y(x): 3 * x / 2 r(a): 3 mm * a / 2 rad
Exponents

x(t): (t^2) * 1 mm

y(t): 1 mm * pow(t;2)

r(t): 1 mm * (t^2)

θ(t): 1 rad * pow(t;2)

y(x): 1 in * (x / 1 mm)^3 r(a): 1 mm * ((a / 1 rad)^3)
Trig Functions

x(t): 1 mm * sin(1 rad * t) + 1 mm * cos(1 rad * t

y(t): 1 mm * tan(1 rad * t)

r(t): 1 mm * cos(1 rad * t) + 1 mm * sin(1 rad * t)

θ(t): 1 rad * tan(1 rad * t)

y(x): 1 mm * sin(1 rad * x / 1 mm) r(a): 1 mm * cos(a)
Inverse Trig Functions

x(t): 1 mm * asin(t) / 1 rad + 1 mm * asin(t) / 1 rad

y(t): 1 mm * atan(t) / 1 rad

r(t): 1 mm * asin(t) / 1 rad

θ(t): acos(t)

y(x): 1 mm * acos(x / 1 mm) / 1 rad r(a): 1 mm * acos(a / 1 rad) / 1 rad
Hyperbolic

x(t): 1 mm * sinh(1 rad * t) + 1 mm * cosh(1 rad * t)

y(t): 1 mm * tanh(1 rad * t)

r(t): 1 mm * cosh(1 rad * t

θ(t): 1 rad * sinh(1 rad * t)

y(x): 1 mm * tanh(1 rad * x / 1 mm) r(a): 1 mm * cosh(a)
Log

x(t): 1 mm * ln(t) )

y(t): 1 mm * log(t)

r(t): 1 mm * log(t

θ(t): 1 rad * ln(t

y(x): 1 mm * ln(x / 1 mm) r(a): 1 mm * ln(a / 1 rad)

3D Equation Formulas

This table shows examples of the formatting required to use certain operators and functions.

  Cartesian Cylindrical Spherical

Addition/Subtraction

x(t): 1 mm * t + 1 mm

y(t): 1 mm * t - 1 mm

z(t): 1 mm * t - 1 mm

r(t): 1 mm * t + 1 mm

θ(t): 1 rad * t + 1 rad

z(t): 1 mm * t - 2 mm

r(t): 1 mm * t + 1 mm

ϕ(t): 1 rad * t + 1 rad

θ(t): 1 rad + t - 1 rad

Multiplication/Division

x(t):2 mm * t

y(t):2 mm / t

z(t): 2 mm / t

r(t): 3 mm * t

θ(t): 2 rad * t

z(t): 2 mm * t / 2

r(t): 3 mm *t

ϕ(t): 2 rad * t

θ(t): 2 rad / 2

Exponents

x(t): (t ^ 2) * 1 mm

y(t): 1 mm * pow(t;2)

z(t): 1 mm * pow(t;2)

r(t): 1 mm * (t ^ 2)

θ(t): 1 rad * pow(t;2)

z(t): 1 mm * (t ^ (1/2))

r(t): 1 mm * (t ^ 2)

ϕ(t): 1 rad * pow(t;2)

θ(t): 1 rad * (t ^ (1/2))

Trig Functions

x(t): 1 mm * sin(1 rad * t) + 1 mm * cos(1 rad * t)

y(t): 1 mm * tan(1 rad * t)

z(t): 1 mm * tan(1 rad * t)

r(t): 1 mm * cos(1 rad * t)

θ(t): 1 rad * sin(1 rad * t)

z(t): 1 mm * tan (1 rad * t)

r(t): 1 mm * cos(1 rad * t)

ϕ(t): 1 rad * sin(1 rad * t)

θ(t): 1 rad * tan(1 rad * t)

Inverse Trig Functions

x(t): 1 mm * asin(t) / 1 rad + 1 mm * asin(t) / 1 rad

y(t): 1 mm * atan(t) / 1 rad

z(t): 1 mm * atan(t) / 1 rad

r(t): 1 mm * acos(t) / 1 rad

θ(t): asin(t)

z(t): 1 mm * atan(t) / 1 rad

r(t): 1 mm * acos(t) / 1 rad

ϕ(t): asin(t)

θ(t): atan(t)

Hyperbolic

x(t): 1 mm * sinh(1 rad * t) + 1 mm * cosh(1 rad * t)

y(t): 1 mm * tanh(1 rad * t)

z(t): 1 mm * tanh(1 rad * t)

r(t): 1 mm * cosh(1 rad * t)

θ(t): 1 rad * sinh(1 rad * t)

z(t): 1 mm * tanh(1 rad * t)

r(t): 1 mm * cosh(1 rad * t)

θ(t): 1 rad * sinh(1 rad * t)

ϕ(t): 1 rad * tanh(1 rad * t)

Log

x(t): 1 mm * ln(t)

y(t): 1 mm * log(t)

z(t): 1 mm * log(t)

r(t): 1 mm * log(t)

θ(t): 1 rad * ln(t)

z(t): 1 mm * ln(t)

r(t): 1 mm * log(t)

ϕ(t): 1 rad * ln(t)

θ(t): 1 rad * ln(t)