Cartesian | Polar | Explicit Cartesian | Explicit Polar | |
---|---|---|---|---|
Addition/Subtraction |
x(t): 1 mm * t + 1 y(t): 1 mm * t - 1 |
r(t): 1 mm * t + 1 θ(t): 1 rad * t - 1 rad |
y(x): x + 1 | r(a): 1 mm * a / 1 rad + 1 |
Multiplication/Division |
x(t): 2 mm * t y(t): 2 mm / t |
r(t): 2 mm * t θ(t): 2 rad / t |
y(x): 3 * x / 2 | r(a): 3 mm * a / 2 rad |
Exponents |
x(t): (t^2) * 1 mm y(t): 1 mm * pow(t;2) |
r(t): 1 mm * (t^2) θ(t): 1 rad * pow(t;2) |
y(x): 1 in * (x / 1 mm)^3 | r(a): 1 mm * ((a / 1 rad)^3) |
Trig Functions |
x(t): 1 mm * sin(1 rad * t) + 1 mm * cos(1 rad * t y(t): 1 mm * tan(1 rad * t) |
r(t): 1 mm * cos(1 rad * t) + 1 mm * sin(1 rad * t) θ(t): 1 rad * tan(1 rad * t) |
y(x): 1 mm * sin(1 rad * x / 1 mm) | r(a): 1 mm * cos(a) |
Inverse Trig Functions |
x(t): 1 mm * asin(t) / 1 rad + 1 mm * asin(t) / 1 rad y(t): 1 mm * atan(t) / 1 rad |
r(t): 1 mm * asin(t) / 1 rad θ(t): acos(t) |
y(x): 1 mm * acos(x / 1 mm) / 1 rad | r(a): 1 mm * acos(a / 1 rad) / 1 rad |
Hyperbolic |
x(t): 1 mm * sinh(1 rad * t) + 1 mm * cosh(1 rad * t) y(t): 1 mm * tanh(1 rad * t) |
r(t): 1 mm * cosh(1 rad * t θ(t): 1 rad * sinh(1 rad * t) |
y(x): 1 mm * tanh(1 rad * x / 1 mm) | r(a): 1 mm * cosh(a) |
Log |
x(t): 1 mm * ln(t) ) y(t): 1 mm * log(t) |
r(t): 1 mm * log(t θ(t): 1 rad * ln(t |
y(x): 1 mm * ln(x / 1 mm) | r(a): 1 mm * ln(a / 1 rad) |
This table shows examples of the formatting required to use certain operators and functions.
Cartesian | Cylindrical | Spherical | |
---|---|---|---|
Addition/Subtraction |
x(t): 1 mm * t + 1 mm y(t): 1 mm * t - 1 mm z(t): 1 mm * t - 1 mm |
r(t): 1 mm * t + 1 mm θ(t): 1 rad * t + 1 rad z(t): 1 mm * t - 2 mm |
r(t): 1 mm * t + 1 mm ϕ(t): 1 rad * t + 1 rad θ(t): 1 rad + t - 1 rad |
Multiplication/Division |
x(t):2 mm * t y(t):2 mm / t z(t): 2 mm / t |
r(t): 3 mm * t θ(t): 2 rad * t z(t): 2 mm * t / 2 |
r(t): 3 mm *t ϕ(t): 2 rad * t θ(t): 2 rad / 2 |
Exponents |
x(t): (t ^ 2) * 1 mm y(t): 1 mm * pow(t;2) z(t): 1 mm * pow(t;2) |
r(t): 1 mm * (t ^ 2) θ(t): 1 rad * pow(t;2) z(t): 1 mm * (t ^ (1/2)) |
r(t): 1 mm * (t ^ 2) ϕ(t): 1 rad * pow(t;2) θ(t): 1 rad * (t ^ (1/2)) |
Trig Functions |
x(t): 1 mm * sin(1 rad * t) + 1 mm * cos(1 rad * t) y(t): 1 mm * tan(1 rad * t) z(t): 1 mm * tan(1 rad * t) |
r(t): 1 mm * cos(1 rad * t) θ(t): 1 rad * sin(1 rad * t) z(t): 1 mm * tan (1 rad * t) |
r(t): 1 mm * cos(1 rad * t) ϕ(t): 1 rad * sin(1 rad * t) θ(t): 1 rad * tan(1 rad * t) |
Inverse Trig Functions |
x(t): 1 mm * asin(t) / 1 rad + 1 mm * asin(t) / 1 rad y(t): 1 mm * atan(t) / 1 rad z(t): 1 mm * atan(t) / 1 rad |
r(t): 1 mm * acos(t) / 1 rad θ(t): asin(t) z(t): 1 mm * atan(t) / 1 rad |
r(t): 1 mm * acos(t) / 1 rad ϕ(t): asin(t) θ(t): atan(t) |
Hyperbolic |
x(t): 1 mm * sinh(1 rad * t) + 1 mm * cosh(1 rad * t) y(t): 1 mm * tanh(1 rad * t) z(t): 1 mm * tanh(1 rad * t) |
r(t): 1 mm * cosh(1 rad * t) θ(t): 1 rad * sinh(1 rad * t) z(t): 1 mm * tanh(1 rad * t) |
r(t): 1 mm * cosh(1 rad * t) θ(t): 1 rad * sinh(1 rad * t) ϕ(t): 1 rad * tanh(1 rad * t) |
Log |
x(t): 1 mm * ln(t) y(t): 1 mm * log(t) z(t): 1 mm * log(t) |
r(t): 1 mm * log(t) θ(t): 1 rad * ln(t) z(t): 1 mm * ln(t) |
r(t): 1 mm * log(t) ϕ(t): 1 rad * ln(t) θ(t): 1 rad * ln(t) |