3ds Max C++ API Reference
Matrix3 Class Reference

#include <matrix3.h>

+ Inheritance diagram for Matrix3:

Public Member Functions

 Matrix3 ()
 
 Matrix3 (const Matrix3 &)=default
 
 Matrix3 (Matrix3 &&)=default
 
Matrix3operator= (const Matrix3 &)=default
 
Matrix3operator= (Matrix3 &&)=default
 
const Point3operator[] (int i) const
 
void SetNotIdent ()
 
void SetIdentFlags (uint32_t f)
 
uint32_t GetIdentFlags () const
 
void ClearIdentFlag (uint32_t f)
 
bool IsIdentity () const
 
void ValidateFlags ()
 
MRowGetAddr ()
 
const MRowGetAddr () const
 
 MAX_DEPRECATE_MATRIX_BOOL_CTOR ("Matrix3 and DMatrix3 are now initialized to identity by default.\n" "No need to use the Matrix3(bool) constructor anymore.\n" "Define MAX_SILENCE_DEPRECATED_MATRIX_BOOL_CTOR to silence this warning.") explicit Matrix3(bool)
 
 Matrix3 (float(*fp)[3])
 
 Matrix3 (const Point3 &U, const Point3 &V, const Point3 &N, const Point3 &T)
 
Matrix3Set (const Point3 &U, const Point3 &V, const Point3 &N, const Point3 &T)
 
int operator== (const Matrix3 &M) const
 
bool operator!= (const Matrix3 &M) const
 
int Equals (const Matrix3 &M, float epsilon=1E-6f) const
 
Matrix3operator-= (const Matrix3 &M)
 
Matrix3operator+= (const Matrix3 &M)
 
Matrix3operator*= (const Matrix3 &M)
 Multiply this matrix on the right by Matrix m. More...
 
Matrix3operator*= (float a)
 
void IdentityMatrix ()
 
void Zero ()
 
Point3 GetRow (int i) const
 
void SetRow (int i, Point3 p)
 
Point4 GetColumn (int i) const
 
void SetColumn (int i, Point4 col)
 
Point3 GetColumn3 (int i) const
 
void NoTrans ()
 
void NoRot ()
 
void NoScale ()
 
void Orthogonalize ()
 Ortho-normalize the matrix. More...
 
void SetTrans (const Point3 &p)
 
void SetTrans (int i, float v)
 
const Point3GetTrans () const
 
void Translate (const Point3 &p)
 
void RotateX (float angle)
 
void RotateY (float angle)
 
void RotateZ (float angle)
 
void Scale (const Point3 &s, bool trans=false)
 
void PreTranslate (const Point3 &p)
 
void PreRotateX (float angle)
 
void PreRotateY (float angle)
 
void PreRotateZ (float angle)
 
void PreScale (const Point3 &s)
 
void SetTranslate (const Point3 &p)
 
void SetRotateX (float angle)
 
void SetRotateY (float angle)
 
void SetRotateZ (float angle)
 
void SetRotate (const Quat &q)
 
void SetRotate (const AngAxis &aa)
 
void SetRotate (float yaw, float pitch, float roll)
 
void SetAngleAxis (const Point3 &axis, float angle)
 
void SetScale (const Point3 &s)
 
void SetFromToUp (const Point3 &from, const Point3 &to, const Point3 &up)
 
void Invert ()
 
Matrix3 operator* (const Matrix3 &) const
 
Matrix3 operator+ (const Matrix3 &) const
 
Matrix3 operator- (const Matrix3 &) const
 
Point3 PointTransform (const Point3 &p) const
 
Point3 VectorTransform (const Point3 &p) const
 
void TransformPoints (Point3 *array, int n, int stride=sizeof(Point3))
 
void TransformPoints (const Point3 *array, Point3 *to, int n, int stride=sizeof(Point3), int strideTo=sizeof(Point3))
 
void TransformVectors (Point3 *array, int n, int stride=sizeof(Point3))
 
void TransformVectors (const Point3 *array, Point3 *to, int n, int stride=sizeof(Point3), int strideTo=sizeof(Point3))
 
void GetYawPitchRoll (float *yaw, float *pitch, float *roll)
 
UTILGEOMEXPORT IOResult Save (ISave *isave)
 Save this Matrix3 to disk. More...
 
UTILGEOMEXPORT IOResult Load (ILoad *iload)
 Load the data for this Matrix3. More...
 
bool Parity () const
 

Static Public Attributes

static const Matrix3 Identity
 An global instance of Matrix3 set to the identity. More...
 

Friends

class Quat
 
Matrix3 RotateXMatrix (float angle)
 
Matrix3 RotateYMatrix (float angle)
 
Matrix3 RotateZMatrix (float angle)
 
Matrix3 TransMatrix (const Point3 &p)
 
Matrix3 ScaleMatrix (const Point3 &s)
 
Matrix3 RotateYPRMatrix (float Yaw, float Pitch, float Roll)
 
Matrix3 RotAngleAxisMatrix (const Point3 &axis, float angle)
 
Matrix3 Inverse (const Matrix3 &M)
 
Matrix3 PseudoInverse (const Matrix3 &m)
 
Matrix3 InverseHighPrecision (const Matrix3 &M)
 
Matrix3 AffineTranspose (const Matrix3 &M)
 
Point3 operator* (const Matrix3 &A, const Point3 &V)
 
Point3 operator* (const Point3 &V, const Matrix3 &A)
 
Point3 VectorTransform (const Matrix3 &M, const Point3 &V)
 
Matrix3 XFormMat (const Matrix3 &xm, const Matrix3 &m)
 
Point3 VectorTransform (const Point3 &V, const Matrix3 &M)
 
void MatrixMultiply (Matrix3 &outMatrix, const Matrix3 &matrixA, const Matrix3 &matrixB)
 
void Inverse (Matrix3 &outMatrix, const Matrix3 &M)
 
void AffineTranspose (Matrix3 &outMatrix, const Matrix3 &M)
 

Detailed Description

See also
Class Point3, Matrix Representations of 3D Transformations, Class Quat, Class AngAxis, Structure AffineParts, Class BigMatrix.

Description:
This class implements a 4x3 3D transformation matrix object. Methods are provided to zero the matrix, set it to the identity, compute its inverse, apply incremental translation, rotation and scaling, and build new X, Y and Z rotation matrices. Operators are provided for matrix addition, subtraction, and multiplication. All methods are implemented by the system.

Note: In 3ds Max, all vectors are assumed to be row vectors. Under this assumption, multiplication of a vector with a matrix can be written either way (Matrix*Vector or Vector*Matrix), for ease of use, and the result is the same – the (row) vector transformed by the matrix.
Data Members:
private:

float m[4][3];

Matrix storage.

uint32_t flags;

Matrix Identity Flags.

POS_IDENT

Indicates the translation row of the matrix is the identity.

ROT_IDENT

Indicates the rotation elements of the matrix are the identity.

SCL_IDENT

Indicates the scale elements of the matrix are the identity.

MAT_IDENT

Indicates the matrix is the identity matrix. This is equivalent to (POS_IDENT|ROT_IDENT|SCL_IDENT).

Constructor & Destructor Documentation

◆ Matrix3() [1/5]

Matrix3 ( )
Remarks
Constructor. Initialized to Identity.

◆ Matrix3() [2/5]

Matrix3 ( const Matrix3 )
default

◆ Matrix3() [3/5]

Matrix3 ( Matrix3 &&  )
default

◆ Matrix3() [4/5]

Matrix3 ( float(*)  fp[3])
explicit
Remarks
Constructor. The matrix is initialized to fp.
Parameters
fpSpecifies the initial values for the matrix.

◆ Matrix3() [5/5]

Matrix3 ( const Point3 U,
const Point3 V,
const Point3 N,
const Point3 T 
)
Remarks
Constructor. Initializes the matrix with the row data passed and validates the matrix flags.
Parameters
UThe data for row 0.
VThe data for row 1.
NThe data for row 2.
TThe data for row 3.

Member Function Documentation

◆ operator=() [1/2]

Matrix3& operator= ( const Matrix3 )
default

◆ operator=() [2/2]

Matrix3& operator= ( Matrix3 &&  )
default

◆ operator[]()

const Point3& operator[] ( int  i) const
Remarks
Returns a reference to the 'i-th' Point3 of the matrix.

◆ SetNotIdent()

void SetNotIdent ( )
Remarks
This clears the MAT_IDENT flag to indicate the matrix is not the identity. Non-const GetAddr() calls this for you.

◆ SetIdentFlags()

void SetIdentFlags ( uint32_t  f)
Remarks
This sets the specified identity flag(s).
Parameters
fSpecifies the identity flag bit(s) to set. See Matrix Identity Flags above.

◆ GetIdentFlags()

uint32_t GetIdentFlags ( ) const
Remarks
Returns the identity flags.

◆ ClearIdentFlag()

void ClearIdentFlag ( uint32_t  f)
Remarks
Clears the specified identity flag(s). See Matrix Identity Flags above.
Parameters
fSpecifies the identity flag bit(s) to clear.

◆ IsIdentity()

bool IsIdentity ( ) const
Remarks
Returns TRUE if the matrix is the identity matrix (based on the flags); otherwise FALSE.

◆ ValidateFlags()

void ValidateFlags ( )
Remarks
This method may be used to recompute the *_IDENT flags for this matrix. For instance, if you call a method, such as INode::GetObjTMAfterWSM(), and it returns a matrix, you cannot use the IsIdentity() method to check if the matrix is indeed the identity. This is because the flags that method checks are not initialized by the INode method. What you can do however is call this method first. This will validate the flags in the matrix so they accuratly reflect the properties of the matrix. If after calling this method, and then calling IsIdentity(), the proper result would be returned.

◆ GetAddr() [1/2]

MRow* GetAddr ( )
Remarks
Returns the address of this Matrix3.

The Matrix3 class keeps flags indicating identity for rotation, scale, position, and the matrix as a whole, and thus the direct access via the [] operator is restricted to prevent developers from modifying the matrix without updating the flags. This method, GetAddr(), still lets you get at the matrix itself and then you can use the [] operator on the result.
Note: GetAddr() always calls SetNotIdent(), which clears all IDENT flags. If you want to re-enable some optimizations, you can use SetIdentFlags() to mark identity components after this call.

Also Note: typedef float MRow[3];
Returns
The address of the Matrix3.

◆ GetAddr() [2/2]

const MRow* GetAddr ( ) const
Remarks
Returns the address of this Matrix3.

This provides read-only access to the Matrix3 elements as a 2 dimentional array.

Also Note: typedef float MRow[3];

◆ MAX_DEPRECATE_MATRIX_BOOL_CTOR()

MAX_DEPRECATE_MATRIX_BOOL_CTOR ( "Matrix3 and DMatrix3 are now initialized to identity by default.\n" "No need to use the Matrix3(bool) constructor anymore.\n" "Define MAX_SILENCE_DEPRECATED_MATRIX_BOOL_CTOR to silence this warning."  )
Remarks
Constructor, Unused. Default constructor now initializes to identity. Kept for backward compatibility.

◆ Set()

Matrix3& Set ( const Point3 U,
const Point3 V,
const Point3 N,
const Point3 T 
)
Remarks
Initializes the matrix with the row data passed and validates the matrix flags.
Parameters
UThe data for row 0.
VThe data for row 1.
NThe data for row 2.
TThe data for row 3.
Returns
A reference to this matrix.

◆ operator==()

int operator== ( const Matrix3 M) const
Remarks
Compares the elements of this matrix and the one specified element by element for exact equality. Returns nonzero if they are equal; otherwise zero.
Parameters
MThe matrix to compare against.

◆ operator!=()

bool operator!= ( const Matrix3 M) const
Remarks
Compares the elements of this matrix and the one specified element by element for inequality. Returns false iff they are unequal.
Parameters
MThe matrix to compare against.

◆ Equals()

int Equals ( const Matrix3 M,
float  epsilon = 1E-6f 
) const
Remarks
Compares the elements of this matrix and the one specified element by element for equality within the specified tolerance epsilon. Returns nonzero if they are 'equal'; otherwise zero.
Parameters
MThe matrix to compare against.
epsilonThe tolerance for comparison. If the values in the matrix are within this value (+ epsilon or - epsilon) they are considered equal.

◆ operator-=()

Matrix3& operator-= ( const Matrix3 M)
Remarks
Subtracts a Matrix3 from this Matrix3.

◆ operator+=()

Matrix3& operator+= ( const Matrix3 M)
Remarks
Adds a Matrix3 to this Matrix3.

◆ operator*=() [1/2]

Matrix3& operator*= ( const Matrix3 M)

Multiply this matrix on the right by Matrix m.

Remarks
Multiplies this Matrix3 by the specified Matrix3 (*this = (*this)*M;).
Matrix3 tm1, tm2;
Matrix3 tm3 = tm1 * tm2; // Is equivalent to the below
tm1 *= tm2; // tm1 now equals tm3
Definition: matrix3.h:99
Parameters
MThe matrix multiplied to the right of this matrix
Returns
A reference to this matrix

◆ operator*=() [2/2]

Matrix3& operator*= ( float  a)
Remarks
Multiplies each element of this Matrix3 by a float.
Matrix3 tm1(1), tm2(2);
tm1 *= 0.7f; // This multiplies all elements by 0.7f
tm2.Scale(Point3(0.7f, 0.7f, 0.7f), TRUE); // This multiplies all elements by 0.7f
tm1 == tm2; // is true
Definition: point3.h:54
Parameters
aThe scale to apply to each element of this matrix
Returns
a reference to this matrix

◆ IdentityMatrix()

void IdentityMatrix ( )
Remarks
Set this matrix to the Identity Matrix.

◆ Zero()

void Zero ( )
Remarks
This method sets all elements of the matrix to 0.0f

◆ GetRow()

Point3 GetRow ( int  i) const
Remarks
Returns the specified row of this matrix.
Parameters
iSpecifies the row to retrieve.

◆ SetRow()

void SetRow ( int  i,
Point3  p 
)
Remarks
Sets the specified row of this matrix to the specified values.
Parameters
iSpecifies the row to set.
pThe values to set.

◆ GetColumn()

Point4 GetColumn ( int  i) const
Remarks
Returns the 'i-th' column of this matrix.
Parameters
iSpecifies the column to get (0-2).

◆ SetColumn()

void SetColumn ( int  i,
Point4  col 
)
Remarks
Sets the 'i-th' column of this matrix to the specified values. Note : Clears the matrix flags.
Parameters
iSpecifies the column to set (0-2).
colThe values to set.

◆ GetColumn3()

Point3 GetColumn3 ( int  i) const
Remarks
Returns the upper three entries in the specified column.
Parameters
iSpecifies the partial column to get (0-2).

◆ NoTrans()

void NoTrans ( )
Remarks
This method zeros the translation portion of this matrix.

◆ NoRot()

void NoRot ( )
Remarks
This method zeros the rotation and scale portion of this matrix.

◆ NoScale()

void NoScale ( )
Remarks
This method zeros the scale portion of this matrix without orthogonalization. If the matrix was sheared (skewed) then this method is not able to remove the scale component completely. In that case, use the Orthogonalize() method instead to remove the scale component entirely. Read the SCL_IDENT flag to check whether the NoScale() method was enough to make the matrix to be orthogonal (with perpendicular axes of unit length).

◆ Orthogonalize()

void Orthogonalize ( )

Ortho-normalize the matrix.

This ensures that each axis of the basis is of length 1 and at right angles to the other. This is an "unbiased" orthogonalization, which means that no single axis is used as the basis for the other axis, and all axis will be modified equally.

Note
This is an iterative process, and should not be used in high-performance situations. It seems to take a maximum of 4 iterations to converge.

◆ SetTrans() [1/2]

void SetTrans ( const Point3 p)
Remarks
Sets the translation row of this matrix to the specified values. The POS_IDENT flag is cleared.
Parameters
pSpecifies the values for the translation row.

◆ SetTrans() [2/2]

void SetTrans ( int  i,
float  v 
)
Remarks
Sets the specified component of the translation row of this matrix to the specified value. The POS_IDENT flag is cleared.
Parameters
iSpecifies the component of the translation row of this matrix to set.
vThe value to set.

◆ GetTrans()

const Point3& GetTrans ( ) const
Remarks
Returns the translation row of this matrix.
Returns
The translation row of this matrix.

◆ Translate()

void Translate ( const Point3 p)
Remarks
Apply an incremental translation transformation to this matrix. This is equivalent to multiplying on the RIGHT by the transform.
Parameters
pSpecifies the translation.

◆ RotateX()

void RotateX ( float  angle)
Remarks
Apply an incremental X rotation transformation to this matrix. This is equivalent to multiplying on the RIGHT by the transform.
Parameters
angleSpecifies the X rotation in radians.

◆ RotateY()

void RotateY ( float  angle)
Remarks
Apply an incremental Y rotation transformation to this matrix. This is equivalent to multiplying on the RIGHT by the transform.
Parameters
angleSpecifies the Y rotation in radians.

◆ RotateZ()

void RotateZ ( float  angle)
Remarks
Apply an incremental Z rotation transformation to this matrix. This is equivalent to multiplying on the RIGHT by the transform.
Parameters
angleSpecifies the Z rotation in radians.

◆ Scale()

void Scale ( const Point3 s,
bool  trans = false 
)
Remarks
Apply an incremental scaling transformation to this matrix. This is equivalent to multiplying on the RIGHT by the transform.
Parameters
sThe scale values.
transIf set to TRUE, the translation component is scaled. If trans = FALSE the translation component is unaffected. When 3ds Max was originally written there was a bug in the code for this method where the translation portion of the matrix was not being scaled. This meant that when a matrix was scaled the bottom row was not scaled. Thus it would always scale about the local origin of the object, but it would scale the world axes. When this bug was discovered, dependencies existed in the code upon this bug. Thus it could not simply be fixed because it would break the existing code that depended upon it working the incorrect way. To correct this the trans parameter was added. If this is set to TRUE, the translation component will be scaled correctly. The existing plug-ins don't use this parameter, it defaults to FALSE, and the code behaves the old way.

◆ PreTranslate()

void PreTranslate ( const Point3 p)
Remarks
Apply an incremental translation transformation to this matrix. This is equivalent to multiplying on the LEFT by the transform. param p Specifies the translation distance.

◆ PreRotateX()

void PreRotateX ( float  angle)
Remarks
Apply an incremental X rotation transformation to this matrix. This is equivalent to multiplying on the LEFT by the transform.
Parameters
angleSpecifies the X rotation in radians.

◆ PreRotateY()

void PreRotateY ( float  angle)
Remarks
Apply an incremental Y rotation transformation to this matrix. This is equivalent to multiplying on the LEFT by the transform.
Parameters
angleSpecifies the Y rotation in radians.

◆ PreRotateZ()

void PreRotateZ ( float  angle)
Remarks
Apply an incremental Z rotation transformation to this matrix. This is equivalent to multiplying on the LEFT by the transform.
Parameters
angleSpecifies the Z rotation in radians.

◆ PreScale()

void PreScale ( const Point3 s)
Remarks
Apply an incremental scaling transformation to this matrix. This is equivalent to multiplying on the LEFT by the transform.
Parameters
sThe scale values. The translation component is unaffected.

◆ SetTranslate()

void SetTranslate ( const Point3 p)
Remarks
Sets this matrix to the identity and the translation components to the specified values.
Parameters
pThe translation values to store.

◆ SetRotateX()

void SetRotateX ( float  angle)
Remarks
Sets this matrix to the identity and the rotation components to the specified X rotation.
Parameters
angleThe angle for X rotation (in radians).

◆ SetRotateY()

void SetRotateY ( float  angle)
Remarks
Sets this matrix to the identity and the rotation components to the specified Y rotation.
Parameters
angleThe angle for Y rotation (in radians).

◆ SetRotateZ()

void SetRotateZ ( float  angle)
Remarks
Sets this matrix to the identity and the rotation components to the specified Z rotation.
Parameters
angleThe angle for Z rotation (in radians).

◆ SetRotate() [1/3]

void SetRotate ( const Quat q)
Remarks
Sets the rotation components of the matrix as specified by the quaternion. The translation and scale components will match the identity matrix.
Parameters
qSpecifies the rotation to use for the matrix.

◆ SetRotate() [2/3]

void SetRotate ( const AngAxis aa)
Remarks
Sets the rotation components of the matrix as specified by the AngAxis. The translation and scale components will match the identity matrix.
Parameters
aaSpecifies the rotation to use for the matrix.

◆ SetRotate() [3/3]

void SetRotate ( float  yaw,
float  pitch,
float  roll 
)
Remarks
Sets the rotation components of this matrix using yaw, pitch and roll angles. There are many different conventions for specifying a rotation by means of three Euler angles. This function uses the convention of rotating around the world Z axis, then the X axis, then the Y axis; the three arguments are given in the order Y, X, Z.

This one is equivalent to:

M.IdentityMatrix();

M.RotateZ(roll);

M.RotateX(pitch);

M.RotateY(yaw);

–Which presupposes Y is vertical, X is sideways, Z is forward
Parameters
yawThe yaw angle in radians.
pitchThe pitch angle in radians.
rollThe roll angle in radians.

◆ SetAngleAxis()

void SetAngleAxis ( const Point3 axis,
float  angle 
)
Remarks
Sets the rotation portion of the matrix to the rotation specified by the angle and axis and sets the translation portion to zeros.
Parameters
axisThe axis of rotation.
angleThe angle of rotation about the axis in radians.

◆ SetScale()

void SetScale ( const Point3 s)
Remarks
Sets the scale components of this matrix to the specified values. The other components to this matrix will match the identity.
Parameters
sThe scale factors for the matrix.

◆ SetFromToUp()

void SetFromToUp ( const Point3 from,
const Point3 to,
const Point3 up 
)
Remarks
This creates a matrix describing a viewpoint which is at the 'from' location, looking toward the 'to' location; the viewpoint is tilted so that the 'up' vector points to the top of the view.
Parameters
fromThis specifies the viewpoint source location.
toThis vector specifies the direction of view.
upThis vector points to the top of the view.

◆ Invert()

void Invert ( )
Remarks
This method performs an in-place inversion on this matrix. An inverted matrix, when multiplied by the original, yields the identity.

◆ operator*()

Matrix3 operator* ( const Matrix3 ) const
Remarks
Perform matrix multiplication.

◆ operator+()

Matrix3 operator+ ( const Matrix3 ) const
Remarks
Perform matrix addition.

◆ operator-()

Matrix3 operator- ( const Matrix3 ) const
Remarks
Perform matrix subtraction.

◆ PointTransform()

Point3 PointTransform ( const Point3 p) const
Remarks
Returns the specified point transformed by this matrix.
Parameters
pThe point to transform by this matrix.

◆ VectorTransform()

Point3 VectorTransform ( const Point3 p) const
Remarks
Returns the specified vector transformed by this matrix.
Parameters
pThe vector to transform by this matrix.

◆ TransformPoints() [1/2]

void TransformPoints ( Point3 array,
int  n,
int  stride = sizeof(Point3) 
)
Remarks
Transforms the specified list of points with this matrix.
Parameters
arrayThe array of points to transform with this matrix.
nThe number of points in the array.
strideThe size of the increment used when moving to the next point. If you wish to transform an array of data objects which contain x, y, and z coordinates in order (such as a Point4, or a structure containing a Point3 as a member) you can specify a 'stride' value (for instance sizeof(data_object)).

◆ TransformPoints() [2/2]

void TransformPoints ( const Point3 array,
Point3 to,
int  n,
int  stride = sizeof(Point3),
int  strideTo = sizeof(Point3) 
)
Remarks
Transforms the specified list of points with this matrix and stores the resulting transformed points in the storage passed.
Parameters
arrayThe array of points to transform (the source).
toThe array to store the transformed points (the destination).
nThe number of points in the source array.
strideThe size increment used when moving to the next source location.
strideToThe size increment used when moving to the next storage location.

◆ TransformVectors() [1/2]

void TransformVectors ( Point3 array,
int  n,
int  stride = sizeof(Point3) 
)
Remarks
Transforms the specified list of vectors with this matrix.
Parameters
arrayThe array of vectors to transform with this matrix.
nThe number of vectors in the array.
strideThe size of the increment used when moving to the next vector. If you wish to transform an array of data objects which contain x, y, and z coordinates in order (such as a Point4, or a structure containing a Point3 as a member) you can specify a 'stride' value (for instance sizeof(data_object)).

◆ TransformVectors() [2/2]

void TransformVectors ( const Point3 array,
Point3 to,
int  n,
int  stride = sizeof(Point3),
int  strideTo = sizeof(Point3) 
)
Remarks
Transforms the specified list of vectors with this matrix and stores the resulting transformed vectors in the storage passed.
Parameters
arrayThe array of vectors to transform (the source).
toThe array to store the transformed vectors (the destination).
nThe number of vectors in the source array.
strideThe size increment used when moving to the next source location.
strideToThe size increment used when moving to the next storage location.

◆ GetYawPitchRoll()

void GetYawPitchRoll ( float *  yaw,
float *  pitch,
float *  roll 
)
Remarks
Retrieves the yaw, pitch and roll angles represented by the rotation in this matrix.
Parameters
yawThe yaw rotation angle is stored here (in radians).
pitchThe pitch rotation angle is stored here (in radians).
rollThe roll rotation angle is stored here (in radians).

◆ Save()

UTILGEOMEXPORT IOResult Save ( ISave isave)

Save this Matrix3 to disk.

Parameters
isaveThe interface responsible for actually saving the data
Returns
IO_OK on success, or a failure code
Remarks
Save and Load are only forward declared in this header! If you need to use Save or Load, you must link with maxutil, which is where these methods are implemented. This way, geom.dll is independent from maxsdk.

◆ Load()

UTILGEOMEXPORT IOResult Load ( ILoad iload)

Load the data for this Matrix3.

Parameters
iloadThe interface responsible for actually loading the data
Returns
IO_OK on success, or a failure code
Remarks
Save and Load are only forward declared in this header! If you need to use Save or Load, you must link with maxutil, which is where these methods are implemented. This way, geom.dll is independent from maxsdk.

◆ Parity()

bool Parity ( ) const
Remarks
Returns the 'parity' of the matrix. Scaling one axis of the matrix negatively switches the 'parity'. However if you scale two axis the parity will flip back. Scaling three axis switches the parity again.

When rendering a mesh, if you scale something along one axis, it turns 'inside out'. That is the direction when the normals are reversed. This method may be used to detect that case and then reverse the normals. The 3ds Max renderer does this – if this method returns TRUE it flips all the normals so it won't turn inside out.

Friends And Related Function Documentation

◆ Quat

friend class Quat
friend

◆ RotateXMatrix

Matrix3 RotateXMatrix ( float  angle)
friend
Remarks
Builds a new matrix for use as a X rotation transformation.
Parameters
angleSpecifies the angle of rotation in radians.
Returns
A new X rotation Matrix3.

◆ RotateYMatrix

Matrix3 RotateYMatrix ( float  angle)
friend
Remarks
Builds a new matrix for use as a Y rotation transformation.
Parameters
angleSpecifies the angle of rotation in radians.
Returns
A new Y rotation Matrix3.

◆ RotateZMatrix

Matrix3 RotateZMatrix ( float  angle)
friend
Remarks
Builds a new matrix for use as a Z rotation transformation.
Parameters
angleSpecifies the angle of rotation in radians.
Returns
A new Z rotation Matrix3.

◆ TransMatrix

Matrix3 TransMatrix ( const Point3 p)
friend
Remarks
Builds a new matrix for use as a translation transformation.
Parameters
pSpecifies the translation values.
Returns
A new translation Matrix3.

◆ ScaleMatrix

Matrix3 ScaleMatrix ( const Point3 s)
friend
Remarks
Builds a new matrix for use as a scale transformation.
Parameters
sSpecifies the scale values.
Returns
A new scale Matrix3.

◆ RotateYPRMatrix

Matrix3 RotateYPRMatrix ( float  Yaw,
float  Pitch,
float  Roll 
)
friend
Remarks
Builds a new matrix for use as a rotation transformation by specifying yaw, pitch and roll angles.

This definition will depend on what our coordinate system is. This one is equivalent to:

M.IdentityMatrix();

M.RotateZ(roll);

M.RotateX(pitch);

M.RotateY(yaw);

Which presupposes Y is vertical, X is sideways, Z is forward
Parameters
YawSpecifies the yaw angle in radians.
PitchSpecifies the pitch angle in radians.
RollSpecifies the roll angle in radians.
Returns
A new rotation Matrix3.

◆ RotAngleAxisMatrix

Matrix3 RotAngleAxisMatrix ( const Point3 axis,
float  angle 
)
friend
Remarks
Builds a new matrix for use as a rotation transformation by specifying an angle and axis.
Parameters
axisSpecifies the axis of rotation. Note that this angle is expected to be normalized.
angleSpecifies the angle of rotation. Note: The direction of the angle in this method is opposite of that in AngAxisFromQ().
Returns
A new rotation Matrix3.

◆ Inverse [1/2]

Matrix3 Inverse ( const Matrix3 M)
friend
Remarks
Return the inverse of the matrix
Parameters
MThe matrix to compute the inverse of.

◆ PseudoInverse

Matrix3 PseudoInverse ( const Matrix3 m)
friend
Remarks
Return the pseudoinverse of an affine symmetric matrix, meaning that if the matrix is degenerate (projects into a plane, line or point; eg. has both row 1 and column 1 zero) this will still produce a matrix that inverts the nonzero parts of the transform.
Parameters
mThe matrix to compute the pseudoinverse of.

◆ InverseHighPrecision

Matrix3 InverseHighPrecision ( const Matrix3 M)
friend
Remarks
Return the inverse of the matrix using doubles for the intermediary results
Parameters
MThe matrix to compute the inverse of.

◆ AffineTranspose [1/2]

Matrix3 AffineTranspose ( const Matrix3 M)
friend
Remarks
Transposes the affine portion of the matrix. Since Matrix3 does not have a 4th column you cannot transpose the entire 4x4 matrix, so this method only transposes the 3x3 matrix representing rotations, scale and skew.
Parameters
MThe matrix to compute the affine transpose of.

◆ operator* [1/2]

Point3 operator* ( const Matrix3 A,
const Point3 V 
)
friend
Remarks
These transform a Point3 with a Matrix3. These two versions of transforming a point with a matrix do the same thing, regardless of the order of operands (linear algebra rules notwithstanding).
Parameters
AThe matrix to transform the point with.
VThe point to transform.
Returns
The transformed Point3.

◆ operator* [2/2]

Point3 operator* ( const Point3 V,
const Matrix3 A 
)
friend
Remarks
These transform a Point3 with a Matrix3. These two versions of transforming a point with a matrix do the same thing, regardless of the order of operands (linear algebra rules notwithstanding).
Parameters
VThe point to transform.
AThe matrix to transform the point with.
Returns
The transformed Point3.

◆ VectorTransform [1/2]

Point3 VectorTransform ( const Matrix3 M,
const Point3 V 
)
friend
Remarks
Transform the vector (Point3) with the specified matrix.
Parameters
MThe matrix to transform the vector with.
VThe vector to transform.
Returns
The transformed vector (as a Point3).

◆ XFormMat

Matrix3 XFormMat ( const Matrix3 xm,
const Matrix3 m 
)
friend
Remarks
This method is used to build a matrix that constructs a transformation in a particular space. For example, say you have a rotation you want to apply, but you want to perform the rotation in another coordinate system. To do this, you typically transform into the space of the coordinate system, then apply the transformation, and then transform out of that coordinate system. This method constructs a matrix that does just this. It transforms matrix m so it is applied in the space of matrix xm. It returns a Matrix3 that is xm*m*Inverse(xm).
Parameters
xmSpecifies the coordinate system you want to work in.
mSpecifies the transformation matrix.
Returns
Returns a Matrix3 that is xm*m*Inverse(xm).

◆ VectorTransform [2/2]

Point3 VectorTransform ( const Point3 V,
const Matrix3 M 
)
friend

◆ MatrixMultiply

void MatrixMultiply ( Matrix3 outMatrix,
const Matrix3 matrixA,
const Matrix3 matrixB 
)
friend
Remarks
Same as Maxtrix3::operator[]. Perform matrix multiplication without additional matrix copy
Parameters
outMatrixThe result of matrixA * matrixB
matrixAFirst matrix to multiply
matrixBSecond matrix to multiply

◆ Inverse [2/2]

void Inverse ( Matrix3 outMatrix,
const Matrix3 M 
)
friend
Remarks
Same as Maxtrix3::Inverse. Compute the inverse of the matrix without additional matrix copy
Parameters
outMatrixThe inversed matrix.
MThe matrix to compute the inverse of.

◆ AffineTranspose [2/2]

void AffineTranspose ( Matrix3 outMatrix,
const Matrix3 M 
)
friend
Remarks
Same as Matrix3::AffineTranspose. Computes the affine transpose without additional matrix copy
Parameters
outMatrixThe inversed matrix.
MThe matrix to compute the affine transpose of.

Member Data Documentation

◆ Identity

const Matrix3 Identity
static

An global instance of Matrix3 set to the identity.

An identity matrix has no rotation, scale or translation on it. In other words, it is a matrix that has no effect when multiplied with another matrix.
the structure of the Matrix is as follows:

[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
[0, 0, 0]